Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+5y^2+8xy+2x-2y+2=0\)
<=>\(\left(4x^2+8xy+4y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2x+1\right)=0\)
<=>\(\left(2x+2y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(2x+2y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\)=> \(\left(2x+2y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
Dấu "=" xảy ra khi x=-1 và y=1
\(a.=\left(2x\right)^2-2.2x.2y+\left(2y\right)^2=\left(2x-2y\right)^2\)
\(b.=\left(3x\right)^2-2.3x.2+2^2=\left(3x-2\right)^2\)
a. 4x2+4y2-8xy=(2x)2+(2y)2-8xy
=(2x-2y)2
b.9x2-12x+4=(3x)2-12x+22
=(3x-2)2
c.xy2+1/4x2y4+1=xy2+(1/2xy2)2+1
=(1/2xy2+2)2
Lời giải:
$y^2+4^x+2y-2^{x+1}+2=0$
$\Leftrightarrow (y^2+2y+1)+(4^x-2^{x+1}+1)=0$
$\Leftrightarrow (y^2+2y+1)+[(2^x)^2-2.2^x+1]=0$
$\Leftrightarrow (y+1)^2+(2^x-1)^2=0$
Ta thấy:
$(y+1)^2\geq 0; (2^x-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(y+1)^2=(2^x-1)^2=0$
$\Leftrightarrow y=-1; x=0$
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
d)
$8y-2y^3+8xy^2-8x^2y=2y(4-y^2+4xy-4x^2)$
$=2y[4-(4x^2-4xy+y^2)]=2y[2^2-(2x-y)^2]$
$=2y(2-2x+y)(2+2x-y)$
e)
$4x^2(x-3)+9(3-x)=4x^2(x-3)-9(x-3)=(x-3)(4x^2-9)=(x-3)[(2x)^2-3^2]$
$=(x-3)(2x-3)(2x+3)$
f)
$x^4y^4+64=(x^2y^2)^2+8^2=(x^2y^2)^2+2.x^2y^2.8+8^2-16x^2y^2$
$=(x^2y^2+8)^2-(4xy)^2=(x^2y^2+8-4xy)(x^2y^2+8+4xy)$
a)
$4b-6a^2b+8a-3ab^2$
$=(4b-3ab^2)+(8a-6a^2b)$
$=b(4-3ab)+2a(4-3ab)=(b+2a)(4-3ab)$
b)
$4-4y^2+12xy-9x^2=4-(9x^2-12xy+4y^2)$
$=2^2-(3x-2y)^2=(2-3x+2y)(2+3x-2y)$
c)
$x^2-3x-10=x^2-5x+2x-10=x(x-5)+2(x-5)=(x+2)(x-5)$
1) x2 - 9x = 0
=> x.(x - 9) = 0
=> \(\orbr{\begin{cases}x=0\\x-9=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
2) x4 - 4x2 = 0
=> x2.(x2 - 4) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x\in\left\{2;-2\right\}\end{cases}}\)
3) x2 - 4x + 3 = 0
=> x2 - x - 3x + 3 = 0
=> x.(x - 1) - 3.(x - 1) = 0
=> (x - 1).(x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
18x2+4y2-16xy-8x-8=0
=> (4y2-16xy+16x2)+(2x2-8x+8)=0
=>(2y-4x)2+2(x-4)2=0\(\)
=> \(\left\{{}\begin{matrix}2y-4x=0\\x-4=0\end{matrix}\right.\)\(\)
=> \(\left\{{}\begin{matrix}x=4\\y=8\end{matrix}\right.\)
Sao -8 thành +8 vậy bn