![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mấy bài này đều là toán lớp 8 mà. Mình mới lớp 8 mà cũng làm được nữa là bạn lớp 9 mà không làm được afk?
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
![](https://rs.olm.vn/images/avt/0.png?1311)
Hệ \(\Leftrightarrow\hept{\begin{cases}3x^2+2x.\left(\frac{4x-6}{3}\right)-x+\frac{4x-6}{3}=0\left(1\right)\\y=\frac{4x-6}{9}\end{cases}}\)
Nhân 3 vào pt (1) rồi giải là ra nhé :)))
Học tốt!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\sqrt{3x+9}+\sqrt{x-4}=0\).
\(\Leftrightarrow\sqrt{3x+9}=-\sqrt{x-4}\\ \Leftrightarrow3x+9=x-4\\ \Leftrightarrow3x-x=-4-9\\ \Leftrightarrow2x=-13\\ \Leftrightarrow x=-\frac{13}{2}\left(KTM\right)\)
Thử lại không thỏa mãn
Vậy \(x\in\varnothing\)
\(b)\sqrt{4x^2+4x+1}+\sqrt{\left(x-3\right)^2}=0\).
\(\Leftrightarrow\sqrt{4x^2+4x+1}+\left|x-3\right|=0\\ \Leftrightarrow\sqrt{4x^2+4x+1}=-\left|x-3\right|\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x^2+4x+1}=0\\-\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\left(KTM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)
Thử lại cả hai giá trị đều không thỏa mãn
Vậy \(x\in\varnothing\)
\(c)\sqrt{x^2-4}+\sqrt{6-3x}=0\).
\(\Leftrightarrow\sqrt{x^2-4}=-\sqrt{6-3x}\\ \Leftrightarrow x^2-4=6-3x\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=3\left(2-x\right)\\ \Leftrightarrow\left(x-2\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)
Thử lại \(x=2\) thỏa mãn
bạn thiếu đkxđ kìa thế mà vẫn so sánh nghiệm được giỏi ghê
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: \(x\ge\frac{1}{3}\)
Đặt: \(\sqrt{3x-1}=t\left(t\ge0\right)\)
Ta có pt: \(x^2-x-t^2+t=0\)
<=> \(\left(x^2-t^2\right)-\left(x-t\right)=0\)
<=> \(\left(x-t\right)\left(x+t-1\right)=0\)
<=> \(\Leftrightarrow\orbr{\begin{cases}t=x\\t=1-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{3x-1}=x\\\sqrt{3x-1}=1-x\end{cases}}\)
Em làm tiếp nhé!
pt vô nghiệm
-_-
--_--
em ko bt lm