Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x-y=1\\3x+2y=m\end{cases}\Leftrightarrow}\hept{\begin{cases}2x-2y=2\\3x+2y=m\end{cases}}\) \(\Rightarrow5x=m+2\Rightarrow x=\frac{m+2}{5}\)
thay \(y=x-1=\frac{m+2}{5}-1=\frac{m-3}{5}\)
Vì \(\frac{x}{y}=\frac{3}{4}\Rightarrow x=\frac{3y}{4}\Rightarrow\frac{m+2}{5}=3\left(\frac{m-3}{20}\right)\Leftrightarrow m=-17\)
Vậy m = -17
Do x^2,y^2,z^2≥0 nên x+1≥0;y+1≥0;z+1≥0⇒x,y,z≥−1
★ Nếu x≥0 thì z^2=x+1≥1⇒z>0⇒y^2=z+1>1⇒y>0
Không mất tính tổng quát giả sử x≥y≥z>0⇒x^2≥y^2≥z^2>0⇒y≥z≥x⇒x=y=z và x^2=x+1⇒x=y=z=(1+√5)/2
★ Nếu −1≤x≤0 thì y+1=x^2<1⇒y≤0⇒z+1=y2<1⇒z<0
Không mất tính tổng quát giả sử −1≤x≤y≤z≤0⇒x2≥y2≥z2>0⇒y≥z≥x suy ra x=y=z=(1−√5)/2
Vậy hệ có 2 nghiệm x=y=z=(1±√5)/2
Em còn cách khác. Anh xem có đúng ko?
Điều kiện: \(x,y,z\ge-1\)
Xét các trường hợp, dùng phương pháp đánh giá, CM được:
\(x=y=z\)
Thế vào tìm được nghiệm:
\(x=y=z=\frac{1\pm\sqrt{5}}{x}\)
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: góc EAH=90 độ-goc ABC
góc ECB=90 độ-góc ABC
=>góc EAH=góc ECB
c: góc xAC=góc ABC
=>góc xAC=góc ADE
=>xy//DE
2x+3y=12 => 2x=12-3y => \(x=\frac{12-3y}{2}\)
Thay x vào pt 1 ta có: y=2 và x=3
Câu 1:
a: \(3\sqrt{2}-2\sqrt{32}+\sqrt{200}=3\sqrt{2}-8\sqrt{2}+10\sqrt{2}=5\sqrt{2}\)
\(\sqrt{\left(2-2\sqrt{5}\right)^2}-\sqrt{20}=2\sqrt{5}-2-2\sqrt{5}=-2\)
c: Vì y=ax+b//y=4x+23 nên a=4
Vậy: y=4x+b
Thay x=2,5 và y=0 vào y=4x+b, ta được:
b+10=0
hay b=-10
a)\(3\sqrt{2}-2\sqrt{32}+\sqrt{200}=3\sqrt{2}-8\sqrt{2}+10\sqrt{2}\)=5\(\sqrt{2}\)
\(\sqrt{\left(2-2\sqrt{5}\right)^2}-\sqrt{20}=|2-2\sqrt{5}|-\sqrt{20}\)=2\(\sqrt{5}-2-\sqrt{20}\)=\(2\sqrt{5}-2-2\sqrt{5}\)=-2
b)Đồ thị hàm số y=x-3 đi qua hai điểm là ( 0;-3) và (3;0)
c)Do hàm số y=ax + b song song với đường thẳng y=4x+23 nên ta có :
\(\left\{{}\begin{matrix}a=4\\b\ne23\end{matrix}\right.\)
mà hàm số y=ax +b cát truc Ox tại điểm có hoành độ bằng 2,5
\(\Rightarrow\) b=-2,5
d)y=x-3 nghịch biến trên R khi m>0
y=x-3 đồng biến trên R khi m<0
\(\left\{{}\begin{matrix}2x-y=3\\x^2+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x^2+2x-3=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\\left(x+1\right)^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=-4\Rightarrow y=-11\end{matrix}\right.\)
cảm ơn bn nhiều nha