K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Xét phương trình hoành độ giao điểm:

\(2x^2=2mx-m-2x+2\)

\(\Leftrightarrow2x^2-2\left(m-1\right)x+m-2=0\left(1\right)\)

Xét pt (1) có:

\(\Delta=4\left(m-1\right)^2-4.2.\left(m-2\right)\)

= \(4m^2-16m+20\)

= \(\left(2m-4\right)^2+4\) >0 với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi m

\(\Rightarrow\) 2 đường thẳng luôn cắt nhau tại 2 điểm phân biệt

Áp dụng công thức nghiệm ta có:

\(x_A=\dfrac{2m-2+\sqrt{\Delta}}{4}\Rightarrow y_A=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{16}\)

\(x_B=\dfrac{2m-2-\sqrt{\Delta}}{4}\Rightarrow y_B=\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}\)

Theo đề bài ta có:

\(x_A-y_B=y_A-x_B-1\)

\(\Leftrightarrow\dfrac{2m-2+\sqrt{\Delta}}{4}-\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{4}-\dfrac{2m-2-\sqrt{\Delta}}{4}-1\)

\(\Leftrightarrow4\left(2m-2+\sqrt{\Delta}\right)-2\left(2m-2-\sqrt{\Delta}\right)^2=2\left(2m-2+\sqrt{\Delta}\right)^2-4\left(2m-2-\sqrt{\Delta}\right)-16\)\(\Leftrightarrow48m-16-16m^2-4\Delta=0\)

\(\Leftrightarrow48m-16-16m^2-4\left(4m^2-16m+20\right)=0\)

\(\Leftrightarrow-32m^2+112m-96=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy để 2 đường thẳng cắt nhau tại 2 điểm \(A_{\left(x_A;y_A\right)};B_{\left(x_B;y_B\right)}\) thỏa mãn

\(x_A-y_B=y_A-x_B-1\) thì \(m=2\) hoặc \(m=\dfrac{3}{2}\)

27 tháng 6 2020

Bài 2 hình như sai đề thì phải

6 tháng 5 2018

(P) y = x2

(d) y = 2x + m2 + 1

a) Phương trình hoành độ giao điểm:

\(x^2=2x+m^2+1\) (1)

\(\Leftrightarrow x^2-2x-m^2-1=0\)

Nhận xét: \(ac=1\times\left(-m^2-1\right)=-\left(m^2+1\right)\le-1< 0,\forall m\in R\)

⇒ (1) có 2 nghiệm với mọi m

⇒ (P) luôn cắt (d) tại 2 điểm phân biệt A và B.

b)

\(\odot\) Theo định lí Viète, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\odot\) \(T=x_1\left(10m+y_2\right)+x_2\left(10m+y_1\right)+1968\)

\(=10m\left(x_1+x_2\right)+x_1\times x_2^2+x_2\times x_1^2+1968\)

\(=20m+x_1x_2\left(x_2+x_1\right)+1968\)

\(=20m-2\left(m^2+1\right)+1968=-2m^2+20m+1966\)

\(=-2\left(m-5\right)^2+2016\le2016\)

Dấu "=" xảy ra khi \(m-5=0\Leftrightarrow m=5\)

6 tháng 5 2018

Mình chưa hiểu phần dưới đây lắm

x1(10m+y2)+x2(10m+y1)+1968

=10m(x1+x2)+x1 . x22 +x2.x12+1968

6 tháng 7 2020

a) Giải phương trình hoành độ giao điểm với a=2 ta đc

\(x^2-2x-2=0\)

\(x_1=1+\sqrt{3};x_2=1-\sqrt{3}\)

với x=...