Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)
b, \(x^2-2\sqrt{11}+11=0\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)
a) \(x^2-5=0\)
\(x^2=5\Leftrightarrow x=-\sqrt{5}\) hoặc \(x=\sqrt{5}\)
Vậy S={\(-\sqrt{5}\);\(\sqrt{5}\)}
b) \(x^2-2.\sqrt{11}x+11=0\)
\(x^2-2.x.\sqrt{11}+\left(\sqrt{11}\right)^2=0\)
\(\left(x-\sqrt{11}\right)^2=0\)
\(x-\sqrt{11}=0\)
\(x=\sqrt{11}\)
Vậy S={\(\sqrt{11}\)}
\(\)
a) \(a^2-5=0\)<=>\(\left(a-\sqrt{5}\right)\left(a+\sqrt{5}\right)=0\)
<=> \(\left[\begin{array}{nghiempt}a-\sqrt{5}=0\\a+\sqrt{5}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}a=\sqrt{5}\\a=-\sqrt{5}\end{array}\right.\)
b)\(x^2-2\sqrt{11}x+11=\left(x-\sqrt{11}\right)^2=0\)
=>\(x+\sqrt{11}=0\)
=> x=\(\sqrt{11}\)
`Answer:`
a) \(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\)
\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\)
\(\Leftrightarrow x=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(\Leftrightarrow x=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(\Leftrightarrow x=\sqrt{2}\)
b) \(x^4+x^2-6=0\)
\(\Leftrightarrow x^4+3x^2-2x^2-6=0\)
\(\Leftrightarrow x^2.\left(x^2+3\right)-2\left(x^2+3\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x^2=-3\text{(Vô lý)}\end{cases}}}\)
Đặt \(\frac{x-2}{x-1}=a;\frac{x+2}{x+1}=b\) ta có: \(pt\Leftrightarrow10a^2+b^2-11ab=0\)
\(\Leftrightarrow10a^2-10ab-ab+b^2=0\Leftrightarrow\left(a-b\right)\left(10a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\10a=b\end{cases}}\)
TH1: \(\frac{x-2}{x-1}=\frac{x+2}{x+1}\)
TH2: \(10.\frac{x-2}{x-1}=\frac{x+2}{x+1}\)
Từ đó em có thể làm tiếp nhé.
a/ \(\sqrt{4x^2}=6\Rightarrow\left|2x\right|=6\Rightarrow\orbr{\begin{cases}2x=6\\2x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}}\)
b/ \(x^2-2\sqrt{11}x+11=0\Rightarrow\left(x-\sqrt{11}\right)^2=0\Rightarrow x=\sqrt{11}\)
c/ \(\sqrt{16x}=8\Rightarrow4\sqrt{x}=8\Rightarrow\sqrt{x}=2\Rightarrow x=4\) (ĐKXĐ : x>=0)
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)
a) \(x^2+\sqrt{x^2+11}=31\)
\(\Leftrightarrow x^2-31+\sqrt{x^2+11}=0\)
\(\Leftrightarrow x^2+11+\sqrt{x^2+11}-42=0\)
Đặt \(a=\sqrt{x^2+11}\)( a > 0 ) ta có :
\(a^2+a-42=0\)( \(a^2=x^2+11\))
\(\Leftrightarrow a^2+7a-6a-42=0\)
\(\Leftrightarrow a\left(a+7\right)-6\left(a+7\right)=0\)
\(\Leftrightarrow\left(a+7\right)\left(a-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-7\\a=6\end{cases}}\Leftrightarrow a=6\left(a>0\right)\)
\(\Leftrightarrow\sqrt{x^2+11}=6\)
\(\Leftrightarrow x^2+11=36\)
\(\Leftrightarrow x=\pm5\)
b) \(\sqrt{-x+4x}+2=2x\)
\(\Leftrightarrow\sqrt{3x}+2-2x=0\)
\(\Leftrightarrow\sqrt{3x}-3x+x+2=0\)
Đặt \(a=\sqrt{3x}\Leftrightarrow a^2=3x\)( a > 0 )
\(\Leftrightarrow a-a^2+\frac{a^2}{3}+2=0\)
\(\Leftrightarrow\frac{3a-3a^2+a^2+6}{3}=0\)
\(\Leftrightarrow-2a^2+3a+6=0\)
\(\Leftrightarrow-2a^2+6a-3a+6=0\)
\(\Leftrightarrow-2a\left(a-3\right)-3\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(-2a-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=\frac{-3}{2}\end{cases}\Leftrightarrow a=3}\)
\(\Leftrightarrow\sqrt{3x}=3\)
\(\Leftrightarrow3x=9\Leftrightarrow x=3\)
x2 – 2√11 x + 11 = 0
⇔ x2 – 2√11 x + (√11)2 = 0
⇔ (x - √11)2 = 0
⇔ x - √11 = 0 ⇔ x = √11
Vậy phương trình có một nghiệm là x = √11