\(x^2-2\sqrt{11}x+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

a) \(a^2-5=0\)<=>\(\left(a-\sqrt{5}\right)\left(a+\sqrt{5}\right)=0\)

<=> \(\left[\begin{array}{nghiempt}a-\sqrt{5}=0\\a+\sqrt{5}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}a=\sqrt{5}\\a=-\sqrt{5}\end{array}\right.\)

b)\(x^2-2\sqrt{11}x+11=\left(x-\sqrt{11}\right)^2=0\)

=>\(x+\sqrt{11}=0\)

=> x=\(\sqrt{11}\)

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

28 tháng 3 2022

I my va li it so ceut

30 tháng 3 2022

`Answer:`

a) \(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\)

\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\)

\(\Leftrightarrow x=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(\Leftrightarrow x=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(\Leftrightarrow x=\sqrt{2}\)

b) \(x^4+x^2-6=0\)

\(\Leftrightarrow x^4+3x^2-2x^2-6=0\)

\(\Leftrightarrow x^2.\left(x^2+3\right)-2\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x^2=-3\text{(Vô lý)}\end{cases}}}\)

a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)

b, \(x^2-2\sqrt{11}+11=0\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)

7 tháng 6 2017

a) \(x^2-5=0\)

\(x^2=5\Leftrightarrow x=-\sqrt{5}\) hoặc \(x=\sqrt{5}\)

Vậy S={\(-\sqrt{5}\);\(\sqrt{5}\)}

b) \(x^2-2.\sqrt{11}x+11=0\)

\(x^2-2.x.\sqrt{11}+\left(\sqrt{11}\right)^2=0\)

\(\left(x-\sqrt{11}\right)^2=0\)

\(x-\sqrt{11}=0\)

\(x=\sqrt{11}\)

Vậy S={\(\sqrt{11}\)}

\(\)

a, \(x^2-11=0\)

    \(x^2=11\)

    \(x=\sqrt{11}\).

b, \(x^2-2\sqrt{13}x+13=0\)

    \(\left(x-\sqrt{13}\right)^2=0\)

     \(x-\sqrt{13}=0\)

     \(x=\sqrt{13}.\)

c, Câu này em chưa được học ạ. Thông cảm.

13 tháng 6 2019

đặt x+5=a\(\left(a\ge0\right)\) khi đó phương trình trở thành:

\(a^2-4+\sqrt{a}+\sqrt{16-a}=0\)

lại có \(\sqrt{a}+\sqrt{16-a}\ge\sqrt{a+16-a}=4\)

nên ta có:

\(a^2-4+\sqrt{a}+\sqrt{16-a}\ge a^2\)

Suy ra \(0\ge a^2\)

\(\Rightarrow a=0\)hay x+5=0

\(\Leftrightarrow x=-5\)

14 tháng 6 2019

Cảm ơn

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

1. ĐKXĐ: $\xgeq \frac{-6}{5}$

PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)

\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)

\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)

Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$

Do đó: $x^2-x-2=0$

$\Leftrightarrow (x+1)(x-2)=0$

$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2021

Bài 2: Tham khảo tại đây:

Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24

8 tháng 8 2016

Đặt \(\frac{x-2}{x-1}=a;\frac{x+2}{x+1}=b\) ta có: \(pt\Leftrightarrow10a^2+b^2-11ab=0\)

\(\Leftrightarrow10a^2-10ab-ab+b^2=0\Leftrightarrow\left(a-b\right)\left(10a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\10a=b\end{cases}}\)

TH1: \(\frac{x-2}{x-1}=\frac{x+2}{x+1}\)

TH2: \(10.\frac{x-2}{x-1}=\frac{x+2}{x+1}\)

Từ đó em có thể làm tiếp nhé.

8 tháng 8 2016

jup mk vs cac ty oi

27 tháng 6 2018

Câu 1) x\(^2\) - 5 = 0

\(\Leftrightarrow\)(x - \(\sqrt{5}\))(x + \(\sqrt{5}\)) = 0

\(\Leftrightarrow\)x = \(\sqrt{5}\) hoặc

x = -\(\sqrt{5}\)

Câu 2) x\(^2\) - \(2\sqrt{13}x\) +13 = 0

\(\Leftrightarrow\)(x - \(\sqrt{13}\))\(^2\) = 0

\(\Leftrightarrow\)x - \(\sqrt{13}\) = 0

\(\Leftrightarrow\)x = \(\sqrt{13}\)

Câu 3) \(\left(x+2\right)\sqrt{x-3}=0\)

\(\Leftrightarrow x=-2\) hoặc

\(x=3\)

Câu 4) Tới lúc này mình hơi lười nên bạn tự giải phương trình nhé.

Hướng dẫn: Ta biết nếu\(\sqrt{x}\) = a với a\(\ge\) 0 thì x= a\(^2\), nên ta đưa về tìm x thỏa mãn (x + \(\sqrt{x-2}\))\(^2\) = 4(x-1)

Giải phương trình này ta có x=2.

Câu 5)\(\sqrt{9-12x+4x^2}=4\)

\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4\)

\(\Leftrightarrow\left|3-2x\right|=4\)

\(\Leftrightarrow3-2x=4\) hoặc

-3 + 2x = 4

\(\Leftrightarrow\) x= -0.5 hoặc x= 3.5