K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Ta có:  - 2   x 2  + 6x = 0 ⇔ x(6 -  2  x) = 0

⇔ x = 0 hoặc 6 -  2  x = 0 ⇔ x = 0 hoặc x = 3 2

Vậy phương trình có hai nghiệm x 1  = 0,  x 2  = 3 2

2 tháng 3 2020

\(x^2-6x+9=0\)     (1)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)

\(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc \(x=1\)

hoặc \(x=2\)

Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)

Mà 2 phương trình trên có 1 nghiệm chung

\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

9 tháng 10 2021

tl

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

^HT^

3 tháng 8 2016

Đặt \(x^2-6x=t\)

Ta có: \(\frac{21}{t}-t+4=0\Leftrightarrow t^2-4t-21=0\\ \Rightarrow\left(t-7\right)\left(t+3\right)=0\\ \Leftrightarrow\orbr{\begin{cases}t=7\\t=-3\end{cases}}\)

\(t=7\Rightarrow x^2-6x-7=0\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

\(t=3\Rightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3-\sqrt{12}\\x=3+\sqrt{12}\end{cases}}\)

3 tháng 8 2016
Có người làm rồi kìa
5 tháng 2 2023

\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

Mấy câu còn lại mình giải rồi 

5 tháng 2 2023

Ok cảm ơn bạn =)

a: Ta có: \(x^2+3x+4=0\)

\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)

Do đó: Phương trình vô nghiệm

1 tháng 1 2022

\(a,x^2-6x+5=0\\ \Rightarrow\left(x^2-5x\right)-\left(x-5\right)=0\\ \Rightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

\(b,2x^2+4x-8=0\\ \Rightarrow x^2+2x-4=0\\ \Rightarrow\left(x^2+2x+1\right)-5=0\\ \Rightarrow\left(x+1\right)^2-\sqrt{5^2}=0\\ \Rightarrow\left(x+1+\sqrt{5}\right)\left(x+1-\sqrt{5}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{5}\\x=-1+\sqrt{5}\end{matrix}\right.\)

\(c,4y^2-4y+1=0\\ \Rightarrow\left(2y-1\right)^2=0\\ \Rightarrow2y-1=0\\ \Rightarrow y=\dfrac{1}{2}\)

\(d,5x^2-x+2=0\)

Ta có:\(\Delta=\left(-1\right)^2-4.5.2=1-40=-39\)

Vì \(\Delta< 0\Rightarrow\) pt vô nghiệm

29 tháng 10 2021

\(PT\Leftrightarrow x^2-2x+\sqrt{6x^2-12x+7}=0\\ \Leftrightarrow x^2-2x+1+\sqrt{6x^2-12x+7}-1=0\\ \Leftrightarrow\left(x-1\right)^2+\dfrac{6\left(x-1\right)^2}{\sqrt{6x^2-12x+7}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}\right)=0\\ \Leftrightarrow x=1\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}>0\right)\)

29 tháng 10 2021

em cảm ơn