Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)
a)
5x2−3x=0⇔x(5x−3)=05x2−3x=0⇔x(5x−3)=0
⇔ x = 0 hoặc 5x – 3 =0
⇔ x = 0 hoặc x=35.x=35. Vậy phương trình có hai nghiệm: x1=0;x2=35x1=0;x2=35
Δ=(−3)2−4.5.0=9>0√Δ=√9=3x1=3+32.5=610=35x2=3−32.5=010=0Δ=(−3)2−4.5.0=9>0Δ=9=3x1=3+32.5=610=35x2=3−32.5=010=0
b)
3√5x2+6x=0⇔3x(√5x+2)=035x2+6x=0⇔3x(5x+2)=0
⇔ x = 0 hoặc √5x+2=05x+2=0
⇔ x = 0 hoặc x=−2√55x=−255
Vậy phương trình có hai nghiệm: x1=0;x2=−2√55x1=0;x2=−255
Δ=62−4.3√5.0=36>0√Δ=√36=6x1=−6+62.3√5=06√5=0x2=−6−62.3√5=−126√5=−2√55Δ=62−4.35.0=36>0Δ=36=6x1=−6+62.35=065=0x2=−6−62.35=−1265=−255
c)
2x2+7x=0⇔x(2x+7)=02x2+7x=0⇔x(2x+7)=0
⇔ x = 0 hoặc 2x + 7 = 0
⇔ x = 0 hoặc x=−72x=−72
Vậy phương trình có hai nghiệm: x1=0;x2=−72x1=0;x2=−72
Δ=72−4.2.0=49>0√Δ=√49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72Δ=72−4.2.0=49>0Δ=49=7x1=−7+72.2=04=0x2=−7−72.2=−144=−72
d)
2x2−√2x=0⇔x(2x−√2)=02x2−2x=0⇔x(2x−2)=0
⇔ x = 0 hoặc 2x−√2=02x−2=0
⇔ x = 0 hoặc x=√22x=22
Δ=(−√2)2−4.2.0=2>0√Δ=√2x1=√2+√22.2=2√24=√22x2=√2−√22.2=04=0
Câu 1:
Đặt phương trình là (1)
ĐK: \(3x-16y-24\ge0\)
\(3x-16y-24=\sqrt{9x^2+16x+32}\Leftrightarrow\left(3x-16y-24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow9\left(3x-16y-24\right)^2=9\left(9x^2+16x+32\right)\)\(\Leftrightarrow\left(9x-48y-72\right)^2=81x^2+144x+288\)
Với x, y nguyên thì (3y+5) là ước của (-7) và chia cho 3 dư 2
=> (3y+5)=-1 hoặc (3y+5)=-7
+ TH1: \(\left(3y+5\right)=-1\Leftrightarrow y=-2\Rightarrow x=-1\)
+ TH2: \(\left(3y+5\right)=-7\Leftrightarrow y=-4\Rightarrow x=-7\)
Vậy các cặp nghiệm nguyên của (x;y) là: (-1;-2); (-7;-4)
\(\Leftrightarrow\left(9x-48y-72\right)^2=\left(9x+8\right)^2+224\)
\(\Leftrightarrow\left(9x-48y-72\right)^2-\left(9x+8\right)^2=224\)
\(\Leftrightarrow\left(9x-48y-72+9x-8\right)\left(9x-48y-72-9x-8\right)=224\)
\(\Leftrightarrow\left(18x-48y-64\right)\left(-48y-80\right)=224\)
\(\Leftrightarrow-32\left(9x-24y-32\right)\left(3y+5\right)=224\)
\(\Leftrightarrow\left(9x-24y-32\right)\left(3y+5\right)=-7\)
giả sử a là nghiệm chung của 2 phương trình
\(x^2+\text{ax}+bc=0\left(1\right)\) và \(x^2+bx+ca=0\left(2\right)\)
Ta có: \(\hept{\begin{cases}a^2+a\alpha+bc=0\\a^2+b\alpha+ca=0\end{cases}}\)
\(\Rightarrow\alpha\left(a-b\right)+c\left(b-a\right)=0\Rightarrow\left(a-c\right)\left(a-b\right)=0\Rightarrow\alpha=c\ne0\)
Thay \(\alpha=c\)vào (1) ta có: \(c^2+ac+bc=0\Rightarrow c\left(a+b+c\right)=0\Rightarrow a+b+c=0\)
Mặt khác, theo định lý Viet phương trình(1) còn có nghiệm nữa là b, phương trình(2) còn có nghiệm nữa là a. Theo định lý Viet đảo, a và b là hai nghiệm của phương trình \(x^2-\left(a+b\right)x+ab=0\Leftrightarrow x^2+cx+ab=0\left(\text{đ}pcm\right)\)
Để 2 pt \(x^2+ax+bc=0\)(1)
và \(x^2+bc+c=0\) (2)
thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)
Gọi 2 nghiệm của pt (1) là \(x_0\), \(x_1\)và 2 nghiệm của pt (2) là \(x_0\), \(x_2\)
( Nghiệm chung là \(x_0\))
Theo Vi-et , ta có :
\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)
Suy ra :
\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)
Vì \(x_1=b\)và \(x_0.x_1=bc\)nên \(x_0=c\)
Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)
Mà \(x_1.x_2=ab\)
Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)
Gọi nghiệm chung của 2 phương trình là m
Ta có:\(m^2+am+1=0;m^2+bm+17=0\)
\(\Rightarrow2m^2+m\left(a+b\right)+18=0\)
Xét \(\Delta=\left(a+b\right)^2-144\ge0\Rightarrow\left|a+b\right|\ge12\)
Mà \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)
Xét \(a+b=12\Rightarrow.....\)
Xét \(a+b=-12\Rightarrow....\)
Mấy chỗ ..... bạn tự làm nốt
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)