K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)

\(=2+\frac{1}{\left(x^2-x+1\right)}\)

\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)

25 tháng 1 2017

Gọi pt trên là A.

Ta có A = 2 + \(\frac{1}{x^2-x+1}\)

=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.

6 tháng 9 2016

minh ko biet lam

bai nay dau!

bài nào dễ thì mình mới làm được nha!

mình không giúp được nhưng các bạn bấm vào đây

xem xong ủng hộ nha

chúc bạn học tốt

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

17 tháng 2 2021

\(A=\dfrac{3x+1}{2x^2-x+3}\)

\(\Rightarrow A-1=\dfrac{3x+1}{2x^2-x+3}-1\)

\(A-1=\dfrac{3x+1-2x^2+x-3}{2x^2-x+3}\)

\(A-1=\dfrac{-2x^2+4x-2}{2x^2-x+3}=\dfrac{-2\left(x^2-2x+1\right)}{2x^2-x+3}\)

\(A-1=\dfrac{-2\left(x-1\right)^2}{2x^2-x+3}\le0\)

\(\Rightarrow A\le1\)

Dấu bằng xảy ra khi x=1