Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: Q\(=\frac{1}{x^2-2x+3}=\frac{1}{x^2-2x+1+2}=\frac{1}{\left(x-1\right)^2+2\ge2}\)
\(\Rightarrow Q\ge\frac{1}{2}\)
Vậy \(Q_{max}\)=\(\frac{1}{2}\)tại x=1
2014/(2x^2-4x+2+2012)
=2014/2(x-1)^2+2012 bé hơn hoặc bằng 2014/2012
suy ra GTLN của biểu thức là 2014/2012 tại x=1
\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)
\(=2+\frac{1}{\left(x^2-x+1\right)}\)
\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)
Gọi pt trên là A.
Ta có A = 2 + \(\frac{1}{x^2-x+1}\)
=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.
mình không giúp được nhưng các bạn bấm vào đây
xem xong ủng hộ nha
chúc bạn học tốt
a, ĐKXĐ: \(X\ne0;X\ne\pm1\)
b,\(A=\frac{X\left(X^2+2X+1\right)}{X\left(X^2-1\right)}=\frac{X\left(X+1\right)^2}{X\left(X-1\right)\left(X+1\right)}=\frac{X+1}{X-1}\)
c,Ta có: \(A=\frac{X+1}{X-1}=2\Leftrightarrow2\left(X-1\right)=X+1\Leftrightarrow2X-2=X+1\Leftrightarrow X=3\)
a) \(ĐKXĐ:x\ne0;x\ne1\)
b) \(A=\frac{x^3+2x^2+x}{x^3-x}\)
\(A=\frac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}\)
\(A=\frac{x\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
\(A=\frac{x+1}{x-1}\)
vậy \(A=\frac{x+1}{x-1}\)
c) thay vào ta được \(\frac{x+1}{x-1}=2\)
\(\Rightarrow\left(x-1\right).2=x+1\)
\(\Rightarrow2x-2=x+1\)
\(\Rightarrow2x-x=1+2\)
\(\Rightarrow x=3\)
vậy \(x=3\)thì \(A=2\)
a: |2x-3|=1
=>2x-3=1 hoặc 2x-3=-1
=>x=1(nhận) hoặc x=2(loại)
KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)
b: ĐKXĐ: x<>-1; x<>2
\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)
\(Q=\frac{1}{x^2-2x+3}=\frac{1}{\left(x^2-2x+1\right)+2}=\frac{1}{\left(x-1\right)^2+2}\)
Để \(\frac{1}{\left(x-1\right)^2+2}\) max <=> \(\left(x-1\right)^2+2\) min
Mà \(\left(x-1\right)^2+2\ge2\) \(\forall x\)
\(\Rightarrow Q=\frac{1}{\left(x-1\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Q_{MAX}=\frac{1}{2}\) tại \(x=1\)