Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)
\(=2+\frac{1}{\left(x^2-x+1\right)}\)
\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)
Gọi pt trên là A.
Ta có A = 2 + \(\frac{1}{x^2-x+1}\)
=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.
mình không giúp được nhưng các bạn bấm vào đây
xem xong ủng hộ nha
chúc bạn học tốt
\(A=\dfrac{3x+1}{2x^2-x+3}\)
\(\Rightarrow A-1=\dfrac{3x+1}{2x^2-x+3}-1\)
\(A-1=\dfrac{3x+1-2x^2+x-3}{2x^2-x+3}\)
\(A-1=\dfrac{-2x^2+4x-2}{2x^2-x+3}=\dfrac{-2\left(x^2-2x+1\right)}{2x^2-x+3}\)
\(A-1=\dfrac{-2\left(x-1\right)^2}{2x^2-x+3}\le0\)
\(\Rightarrow A\le1\)
Dấu bằng xảy ra khi x=1
1
A ,x2-6x+10=(x-3)2+1>1=>A<5
dấu = xảy ra khi x=3
B x2-2x+5=(x-1)2+4>4=>A>-2
dâu = xay ra khi x=1
a, Ta có : \(A=\frac{5}{x^2-6x+10}=\frac{5}{\left(x-3\right)^2+1}\)
Để A lớn nhất <=> \(\left(x-3\right)^2+1\)nhỏ nhất
Ta lại có:
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Vậy MaxA= 5/1=5
Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)
\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)
\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)
\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 2 khi x = 1
Ta có:
\(\frac{x^2+x+1}{x^2+2x+1}\)=\(\frac{0,75x^2+1,5x+0,75}{x^2+2x+1}\)+\(\frac{0,25x^2-0,5x+0,25}{x^2+2x+1}\)
=\(\frac{3}{4}\)+\(\frac{0,25\left(x-1\right)^2}{\left(x+1\right)^2}\)>=\(\frac{3}{4}\)