Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x0 là một nghiệm của phương trình nên \(x_0^2+mx_0+n=0\Rightarrow n=-mx_0-x_0^2\)
Thế vào phương trình (2) ta có: \(m^2+\left(-mx_0-x_0^2\right)^2=2017\)
\(\Rightarrow m^2+m^2x_0^2+2mx_0^3+x_0^4-2017=0\)
\(\Rightarrow\left(1+x_0^2\right)m^2+2x_0^3m+\left(x_0^4-2017\right)=0\left(1\right)\)
Để pt (1) có nghiệm thì \(\Delta'\ge0\Rightarrow\left(x_0^3\right)^2-\left(1+x_0^2\right)\left(x_0^4-2017\right)\ge0\)
\(\Rightarrow-x_0^4+2017x_0^2+2017\ge0\)
\(\Rightarrow0\le x_0^2< 2018\Rightarrow\left|x_0\right|< \sqrt{2018}\left(đpcm\right)\)
pt (1) <=>\(x=2+my-4m\) thay vào pt (2) có:
\(\left(2+my-4m\right)m+y=3m+1\)
<=>\(y\left(m^2+1\right)=m+4m^2+1\) (3)
Để hpt có nghiệm <=> pt (3) có nghiệm
<=> \(m^2+1\ne0\) (luôn đúng với mọi m)
=> pt (3) có nghiệm duy nhất => hpt có nghiệm duy nhất với mọi m.
Do x0,y0 là 1 nghiệm của hệ => \(\left\{{}\begin{matrix}x_0-my_0=2-4m\\my_0+y_0=3m+1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(3-x_0\right)\left(y_0-4\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(3-x_0\right)\left(y_0-4\right)\end{matrix}\right.\)
=>\(\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)
<=>\(5x_0-x_0^2-6=y_0^2-5y_0+4\)
<=>\(x^2_0+y^2_0-5\left(y_0+x_0\right)+10=0\)
Câu 3 : Theo định lý vi - et ta luôn có :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-4m+4\end{matrix}\right.\)
\(\Rightarrow A=\left|m^2-4m+4-2m\right|=\left|m^2-6m+4\right|=\left|\left(m-3\right)^2-5\right|\ge5\)
Vậy GTNN của A là 5 . Khi và chỉ khi \(\left(m-3\right)^2=0\Leftrightarrow m=3\)
xét pt \(x^2-\left(m-1\right)x-m^2+m-1=0\) \(\left(1\right)\)
từ (1) có \(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m^2+m-1\right)\)
\(\Delta=m^2-2m+1+4m^2-4m+4\)
\(\Delta=5m^2-6m+5\)
\(\Delta=5\left(m^2-\frac{6}{5}m+1\right)\)
\(\Delta=5\left[m^2-2.\frac{3}{5}m+\frac{9}{25}-\frac{9}{25}+1\right]\)
\(\Delta=5\left[\left(m-\frac{3}{5}\right)^2+\frac{16}{25}\right]>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm phân biệt \(\forall m\)
ta có vi - ét \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m^2+m-1\end{cases}}\)
theo bài ra \(\left|x_2\right|-\left|x_1\right|=2\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)=4\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2+m-1\right)+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow m^2-2m+1+2m^2-2m+2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow3m^2-4m+3+2\left|x_1.x_2\right|=4\)
cái này đến đây xét ra 2 trường hợp rồi đối chiếu với ĐKXĐ là xong
1
\(x^2-4mx+4m^2-2=0\)
\(\Leftrightarrow\left(x-2m\right)^2-2=0\)
\(\Leftrightarrow\left(x-2m+\sqrt{2}\right)\left(x-2m-\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2m-\sqrt{2}\\x=2m+\sqrt{2}\end{cases}}\)
Vậy............