Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
để pt có 2 nghiệm đều âm thì denta >=0
S<0
p>0
denta=(-1)2 -4(m2+m-6)>=0 <=>1-4m2 -4m+24>=0
<=>-4m2-4m+25>=0 (tm)
s=1<0 (vô lí)
p=m2 +m-6 >0 m>2(tm)
vậy không có gtrij nào của m đề pt có 2 nghiệm dều âm
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Xét pt hoành độ của (P) và (d) ta có:
\(x^2=2x+2m\)
\(x^2-2x-2m=0\)
thay m=\(\frac{1}{3}\)
\(x^2-2x-2.\frac{1}{3}=0\)
\(x^2-2x-\frac{2}{3}=0\)
GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)
m=\(\frac{3-\sqrt{15}}{3}\)
b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)
B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)
áp dụng viet đc:
\(x_1+x_2=2\)
\(x_1.x_2=-2m\)
Ta có:(1+y1)(1+y2)=5
\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)
1+(x1+x2)^2-2x1x2+x1^2x2^2=5
1+(2)^2-2.(-2m)+(-2m)^2=5
1+4+4m+4m^2-5=0
4m^2+4m=0
m=-1 và m=0
2)Δ'=(-2m)^2-2.(2m^2-9)
=4m^2-4m^2+2
=2>0 ∀m
=>pt có 2 nghiệm phân biệt ∀ m
b)áp dụng viet:
x1+x2=4m/4=2m
x1.x2=2m^2-1/2
ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)
\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)
mà ta có x1+x2=2m
=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)
\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)
2{(x1^2+x2^2)+x1x2}+2m^2-9<0
2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)
2{(x1+x2)^2-x1x2)+2m^2-9<0
còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đó
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta thấy:
\(\Delta=(m-3)^2+4(2m+1)=m^2+2m+13=(m+1)^2+12>0, \forall m\in\mathbb{R}\)
Do đó PT luôn có 2 nghiệm phân biệt với mọi $m$
Áp đụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=3-m\\ x_1x_2=-2m-1\end{matrix}\right.\)
Khi đó:
\(A=4x_1^2-x_1^2x_2^2+4x_2^2+x_1x_2\)
\(=4(x_1^2+x_2^2+2x_1x_2)-(x_1x_2)^2-7x_1x_2\)
\(=4(x_1+x_2)^2-(x_1x_2)^2-7x_1x_2\)
\(=4(3-m)^2-(-2m-1)^2-7(-2m-1)\)
\(=42-14m\)
Bạn muốn chứng minh biểu thức A thế nào???
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-mx-x-m-3=0\Leftrightarrow x^2-\left(m+1\right)x-m-3\left(1\right)\)
a. \(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4\left(-m-3\right)=m^2+2m+1+4m+12\\ =m^2+6m+13=\left(m+3\right)^2+4\ge4>0\forall m\)
Vậy pt(1) luôn có 2 nghiệm phân biệt ∀m
b. Áp dụng Viet, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=m+1\\x_1\cdot x_2=\frac{c}{a}-m-3\end{matrix}\right.\)
\(P=x_1^2+x_2^2-x_1x_2+3x_1+3x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2+3\left(x_1+x_2\right)\)
\(=\left(m+1\right)^2-3\left(-m-3\right)+3\left(m+1\right)\)
\(=m^2+2m+1+3m+9+3m+3\)
\(=m^2+8m+13=\left(m+4\right)^2-3\ge-3\)
Vậy GTNN của P là -3 khi m=-4
(có gì sai mong mọi người góp ý :3)