K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Tính chất cơ bản của phân thức

Tính chất cơ bản của phân thức

29 tháng 10 2017

Tính chất cơ bản của phân thức

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)

19 tháng 7 2020

Bài 1 :

b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=x\left(x+3\right)\left(x-2\right)\)

Bài 2 :

a, Để \(x^3+3x^2+3x-2⋮x+1\)

<=> \(x^3+1+3x^2+3x-3⋮x+1\)

<=> \(\left(x+1\right)^3-3⋮x+1\)

Ta thấy : \(\left(x+1\right)^3⋮x+1\)

<=> \(-3⋮x+1\)

<=> \(x+1\inƯ_{\left(3\right)}\)

<=> \(x+1=\left\{1,-1,3,-3\right\}\)

<=> \(x=\left\{0,-2,2,-4\right\}\)

Vậy ...

b, Để \(2x^2+x-7⋮x-2\)

<=> \(2x^2-8x+8+9x-15⋮x-2\)

<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)

Ta thấy : \(2\left(x-2\right)^2⋮x-2\)

<=> \(9x-15⋮x-2\)

<=> \(9x-18+3⋮x-2\)

Ta thấy : \(8\left(x-2\right)⋮x-2\)

<=> \(3⋮x-2\)

<=> \(x-2\inƯ_{\left(3\right)}\)

<=> \(x-2=\left\{1,-1,3,-3\right\}\)

<=> \(x=\left\{3,1,5,-1\right\}\)

Vậy ...

11 tháng 11 2017

Bài 7:(Sbt/25) Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :

a. \(\dfrac{3x}{x-5}\)\(\dfrac{7x+2}{5-x}\)

Ta có:

\(\dfrac{3x}{x-5}=\dfrac{-\left(3x\right)}{-\left(x-5\right)}=\dfrac{-3x}{5-x}\)

\(\dfrac{7x+2}{5-x}\)

Vậy .....

b.\(\dfrac{4x}{x+1}\)\(\dfrac{3x}{x-1}\)

Ta có:

\(\dfrac{4x}{x+1}=\dfrac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x^2-4x}{x^2-1}\)

\(\dfrac{3x}{x-1}=\dfrac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2+3x}{x^2-1}\)

Vậy ..........

c. \(\dfrac{2}{x^2+8x+16}\)\(\dfrac{x-4}{2x+8}\)

Ta có:

\(\dfrac{2}{x^2+8x+16}=\dfrac{4}{2\left(x+4\right)^2}\)

\(\dfrac{x-4}{2x+8}=\dfrac{\left(x-4\right)\left(x+4\right)}{2\left(x+4\right)\left(x+4\right)}=\dfrac{x^2-16}{2\left(x+4\right)^2}\)

Vậy .........

d. \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

Ta có:

\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-9}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

Vậy .........

26 tháng 1 2017

a) Theo đề bài, ta có:

\(x^4+x^3+2x^2-7x-5=\left(x^2+2x+5\right)\left(x^2+bx+c\right)\)

\(\Rightarrow x^4+x^3+2x^2-7x-5=x^4+\left(b+2\right)x^3+\left(2b+c+5\right)x^2+\left(5b+2c\right)x+5c\)

Suy ra: \(\left\{\begin{matrix}b+2=1\\2b+c+5=2\\5b+2c=-7\\5c=-5\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}b=-1\\c=-1\end{matrix}\right.\)

b) Theo đề bài, ta có:

\(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)

\(\Rightarrow x^4-2x^3+2x^2-2x+a=x^4+\left(b-2\right)x^3+\left(c-2b+1\right)x^2+\left(b-2c\right)x+c\)

Suy ra: \(\left\{\begin{matrix}b-2=-2\\c-2b+1=2\\b-2c=-2\\c=a\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=1\\b=0\\c=1\end{matrix}\right.\)

25 tháng 6 2019

\(a,ĐK:x\ne-3;x\ne-2\)

\(b,ĐK:x\ne3\)

\(c,ĐK:x\ne0;x\ne\frac{4}{3}\)

\(d,ĐK:x\ne-2;e,ĐK:x\ne\pm2;f:ĐK:x\ne2\)

25 tháng 6 2019

\(A=0\Leftrightarrow2x+6=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(loai\right)\)

\(B=0\Leftrightarrow x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loai\right)\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\) \(C=0\Leftrightarrow9x^2-16=0\Leftrightarrow\left(3x-4\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}3x-4=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\left(loai\right)\\x=-\frac{4}{3}\end{matrix}\right.\Leftrightarrow x=-\frac{4}{3}\) \(D=0\Leftrightarrow\left(x+2\right)=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(loai\right)\)

\(E=0\Leftrightarrow x\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(loai\right)\end{matrix}\right.\Leftrightarrow x=0\)

\(F=0\Leftrightarrow x^2+2x+4=0\Leftrightarrow\left(x+1\right)^2+3=0\left(voli\right)\)

9 tháng 11 2016

a)\(x^2+7x+6\)

\(=x^2+6x+x+6\)

\(=x\left(x+6\right)+\left(x+6\right)\)

\(=\left(x+1\right)\left(x+6\right)\)

b)\(x^4+2016x^2+2015x+2016\)

\(=x^4+2016x^2+\left(2016x-x\right)+2016\)

\(=\left(x^4-x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

9 tháng 11 2016

Bài 3:

Từ \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\) (1)

Ta thấy:\(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (2)

Từ (1) và (2) \(\Rightarrow\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=1\\c=1\end{cases}\)

\(\Rightarrow a=b=c=1\Rightarrow H=1\cdot1\cdot1+1^{2014}+1^{2015}+1^{2016}=1+1+1+1=4\)