Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\)
\(6+4\sqrt{2}=\left(2+\sqrt{2}\right)^2\)
Phiền ad có thể trình bày đầy đủ hộ em đc ko ạ? Vì em mới học sáng nay nên trình bày tắt thì em ko hiểu lắm. Em cảm ơn ạ :>
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
a.
ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{y-1}-3=0$
$\Leftrightarrow x=4; y=10$
b.
ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$
$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$
$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$
\(a.A=\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x+y\right)\sqrt{3}}{2}=\dfrac{\sqrt{3}}{x-y}\) ( x # y )
\(b.\dfrac{1}{2x-1}.\sqrt{5a^4\left(1-4x+4a^2\right)}=\dfrac{1}{2a-1}.\left(2a-1\right)a^2\sqrt{5}=a^2\sqrt{5}\) ( a # \(\dfrac{1}{2}\) )
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
a, (a + b)2 - 4(a+b - 1)
= (a + b)2 - 4(a +b) + 4
= (a + b - 2)2
= { (a+b) - 2}2
b, \(x^2\) + 6\(xy\) + 9\(y\)2 - 2(\(x\) + 3\(y\)) + 1
= (\(x\) + 3\(y\))2 - 2(\(x\) + 3\(y\)) + 1
= { (\(x\) + 3y) - 1}2