Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
M = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024
4.M = 1 + 1/4 + 1/16 + 1/64 + 1/256
4M - M = (1 + 1/4 + 1/16 + 1/64 + 1/256 ) - ( 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 )
3M = 1 - 1/1024
3M = 1023/1024
M = 341/1024
M=\(\dfrac{1}{4}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{256}\)+\(\dfrac{1}{1024}\)
=\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)+\(\dfrac{1}{4^5}\)
=>4M=1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)
=>4M-M=3M=(1+\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\))-(\(\dfrac{1}{4}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{4^3}\)+\(\dfrac{1}{4^4}\)+\(\dfrac{1}{4^5}\))=1-\(\dfrac{1}{4^5}\)=\(\dfrac{1023}{1024}\)
=>M=\(\dfrac{1023}{1024}\):3=\(\dfrac{341}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)
=0
\(\Leftrightarrow\dfrac{15}{16}:x=1-\dfrac{1}{12}=\dfrac{11}{12}\)
\(\Leftrightarrow x=\dfrac{15}{16}:\dfrac{11}{12}=\dfrac{15}{16}\cdot\dfrac{12}{11}=\dfrac{45}{44}\)
a)
\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{7}{2}\)
\(=\dfrac{13}{5}+\dfrac{49}{10}\\ =\dfrac{26}{10}+\dfrac{49}{10}\\ =\dfrac{15}{2}\)
b)
\(=\dfrac{52}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)
\(=\dfrac{52}{4}-\dfrac{22}{7}\\ =\dfrac{69}{7}\)
a) $2\dfrac35 + 1\dfrac25 . 3\dfrac12$
$= \dfrac{13}5 + \dfrac75.\dfrac72$
$= \dfrac{26}{10} + \dfrac{49}{10}$
$=\dfrac{15}2$.
b) $4\dfrac34 - 3\dfrac23 : 1\dfrac16$
$= \dfrac{19}4 - \dfrac{11}3 : \dfrac76$
$= \dfrac{19}4 - \dfrac{11}3 . \dfrac67$
$= \dfrac{19}4 - \dfrac{22}7$
$= \dfrac{45}{28}$.
\(B=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{1024}\)
Ta đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{1024}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\)
\(A=1-\dfrac{1}{1024}\)
\(A=\dfrac{1023}{1024}\)
\(B=A+\dfrac{1}{2}=\dfrac{1023}{1024}+\dfrac{512}{1024}=\dfrac{1535}{1024}\)
mọi người cho mình câu lời giải cụ thể