Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) XÉT tam giác HAC (\(\widehat{H}\)=\(90^O\)) CÓ
AH là đường vuông góc của hình xiên AC
\(\Rightarrow AC>AH\) (quan hệ giữa đường vuông góc và hình xiên trong tam giác) (đpcm)
b) Xét tam giác HAB (\(\widehat{H}=90^o\)) có
AH là đường vuông góc của đường xiên AB
\(\Rightarrow AB>AH\)(quan hệ giữa đường vuông góc và hình xiên) (đpcm)
a: Ta có: ΔAHC vuông tại H
nen AC>AH
Ta co: ΔAHB vuông tạiH
nên AB>AH
b: AB+AC>HA+AH=2HA
nên AH<1/2(AB+AC)
a: AB=AH+HC=5cm
=>BH=4cm
\(BC=\sqrt{4^2+2^2}=2\sqrt{5}\left(cm\right)\)
b: AB=AH+HC=3cm
\(BH=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)
\(BC=\sqrt{5+1}=\sqrt{6}\left(cm\right)\)
c: AB=AH+HC=8,5cm
\(BH=\sqrt{8.5^2-7.5^2}=4\left(cm\right)\)
\(BC=\sqrt{4^2+1^2}=\sqrt{17}\left(cm\right)\)
1.
Ta có : AC<AD (vì : D là tia đối của tia BC )
=> HD<HC
3.
Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)
Mà : 1/2AH<AB+AC
=> AB+AC>2AH
4.
Ta có : ko hiu
xét tan giác ABH vuông tại H suy ra AH <AB (quan hệ giữa đường xiên và đường vuông góc)
xét tam giác AHC vuông tại H suy ra AH<AC (quan hệ giữa đường xiên và đường vuông góc)
theo câu 1 ta có AH<AB và AH<AC suy ra 2AH<AB+AC
suy ra AH <1/2(AB+AC)