\(\Delta\)ABC có 3 góc nhọn. AH\(\perp\)BC tại H. CM:

1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

A B C H

                                 a)              XÉT tam giác HAC (\(\widehat{H}\)=\(90^O\)) CÓ

                                    AH là đường vuông góc của hình xiên AC

                                  \(\Rightarrow AC>AH\) (quan hệ giữa đường vuông góc và hình xiên trong tam giác)      (đpcm)

                            b)                    Xét tam giác HAB (\(\widehat{H}=90^o\)) có

                                          AH là đường vuông góc của đường xiên AB

                                   \(\Rightarrow AB>AH\)(quan hệ giữa đường vuông góc và hình xiên)          (đpcm)

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.3/ Cho tam giác nhọn ABC. H là trực tâm:CMR: a) HA+HB+HC<AB+AC           b)...
Đọc tiếp

1/ Cho \(\Delta ABC\) đường cao AH. Trên nửa mặt phẳng chứa điểm A bờ là BC lấy các điểm D và E sao cho BD\(\perp\)BA, BD = BA, CE\(\perp\)CA, CE = CA. CMR các đường thảng AH, CE, BD đồng quy.

2/ Cho tam giác nhọn ABC, H là trực tâm, G là trọng tâm, O là điểm cách đều 3 đỉnh của \(\Delta ABC\). CMR H, G, O thẳng hàng; HG=2GO.

3/ Cho tam giác nhọn ABC. H là trực tâm:

CMR: a) HA+HB+HC<AB+AC

           b) HA+HB+HC<\(\frac{2}{3}\)(AB+BC+CA)

4/ Cho \(\Delta ABC\) vuông tại A. Gọi I là giao điểm của các đường phân giác ABC. Vẽ \(ID\perp AB\) tại D. CMR AB+AC-BC=2ID

5/ Cho \(\Delta ABC\) vuông tại A. AH là đường cao. Gọi I,K,S lần lượt là giao điểm các đường phân giác của \(\Delta ABC\)\(\Delta ABH\)\(\Delta ACH\). Vẽ \(II'\perp BC\) tại I', \(KK'\perp BC\) tại K', \(SS'\perp BC\) tại S'. CMR: SS'+II'+KK'=HA

0

tự vẽ hình:

a. xét tam giác vuông AHB và tam giác AHC,ta có:
AB = AC ( gt)
AH là cạnh chung

=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> HB = HC ( 2 cạnh tương ứng)

=> \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng) 

mà HB = HC => BC/2 = 8/2= 4 ( cm)

b. xét tam giác vuông BH,theo định lý Pi-ta-go:
AB2 = AH2 + BH2 

=> 52 = x2 + 4

=> x2 = 5- 4

=> x2 = 9 

=> \(\sqrt{x}=9\) 

=> x = 3

Vậy AH = 3 cm

câu c nghĩ đã :)