Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\\ \Rightarrow\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)
ta có x nguyên khi a-5 là bội của 7
hay \(a-5=7k\text{ với k là số nguyên hay }a=7k+5\)
để \(\frac{1}{x}=\frac{7}{5-a}\text{ là số nguyên thì }5-a\text{ là ước của }7\text{ hay}\)
\(5-a\in\left\{\pm7,\pm1\right\}\Rightarrow a\in\left\{12,6,4,-2\right\}\)
Thầy( cô) Nguyễn Minh Quang ơi, em ko hiểu ở chỗ '' Để \(\frac{1}{x}=\frac{7}{5-a}\)thì 5-a là ước của 7''
\(a,\left|a\right|=2\Leftrightarrow a=2\left(a>0\right)\Leftrightarrow y=f\left(x\right)=2x\\ f\left(-2\right)=\left(-2\right).2=-4\\ f\left(4\right)=2.4=8\\ b,f\left(2\right)=2a=6\Leftrightarrow a=3\)
ta có: P(x) chia hết cho 7 với mọi x
=> Xét TH: P(0) = a.02 +b.0 + c = 0 + c => c chia hết cho 7
P(1) = a.12 + b.1 + c = a + b + c => a + b + c chia hết cho 7
mà c chia hết cho 7 (cmt)
=> a + b chia hết cho 7 (*)
P(-1) = a.(-1)2 + b.(-1) + c = a - b + c chia hết cho 7 => a - b chia hết cho 7 ( do c chia hết cho 7)
=> a + b + a - b chia hết cho 7
=> 2a chia hết cho 7
=> a chia hết cho 7 ( do 2 không chia hết cho 7)
mà a+ b chia hết cho 7
=> b chia hết cho 7
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)