Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Ta chia làm 2 bài:
*C/m: Khi 6a, 2b, a+b+c và d là số nguyên thì đa thức trên có giá trị nguyên với mọi x nguyên.
- 6a nguyên \(\Rightarrow\)a nguyên.
- 2b nguyên \(\Rightarrow\)b nguyên.
- a+b+c nguyên \(\Rightarrow\)c nguyên.
\(\Rightarrow\)đpcm.
*C/m: Khi đa thức trên có giá trị nguyên với mọi x nguyên thì 6a, 2b, a+b+c và d là số nguyên.
\(f\left(0\right)=d\) nguyên.
\(f\left(1\right)=a+b+c+d\) nguyên \(\Rightarrow\) a+b+c nguyên.
\(f\left(2\right)=8a+4b+2c+d\) nguyên \(\Rightarrow8a+4b+2c\) nguyên.
\(\Rightarrow4a+2b+c\) nguyên
\(\Rightarrow4a+2b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow3a+b\) nguyên.
\(f\left(3\right)=27a+9b+3c+d\) nguyên \(\Rightarrow27a+9b+3c\) nguyên
\(\Rightarrow9a+3b+c\) nguyên
\(9a+3b+c-\left(a+b+c\right)\) nguyên.
\(\Rightarrow8a+2b\) nguyên \(\Rightarrow4a+b\) nguyên
\(\Rightarrow a,b\) nguyên.
\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)
Mà M(x) nguyên nên d nguyên
\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên
\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên
\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên
Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên
\(P\left(0\right)=d\inℤ\left(1\right)\)
\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)
\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)
\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)
\(\Rightarrow6a\inℤ\)
Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên
Ta có :
f(0) = d
f(1) = a + b + c + d
f(2) = 8a + 4b + c + d
- Nếu f(x) có giá trị nguyên với mọi x thì d ; a + b + c + d ; 8a +4b + c + d có giá trị nguyên .
- Do d nguyên a + b + c nguyên và (a + b + c + d) + (a + b + c) + 2b nguyên => 2b nguyên và 6a nguyên . C/m tương tự
56489876545676-9999999999999999996766666666666666668=