Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)
+ x=0 => c chia hết cho 3
=> ax2 + bx chia hết cho 3 => x(ax +b) chia hết cho 3 lấy x không chia hết cho 3 => ax +b chia hết cho 3 lấy x chia hết cho 3 => b chia hết cho 3
Vậy b ; c chia hết cho 3 => ax2 chia hết cho 3 lấy x không chia hết cho 3 => a chia hết cho 3
=> dpcm
vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:
- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3
- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3
lại có c chia hết cho 3 (đã chứng minh)
nên suy ra a+b chia hết cho 3
- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c
mà c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)
nên suy ra 2a chia hết cho 3
mà (2,3)=1 (2 số nguyên tố cùng nhau)
suy ra a chia hết cho 3
mà a+b chia hết cho 3
nên suy ra b chia hết cho 3
vậy a,b,c chia hết cho 3
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
Với \(x=0\Rightarrow f\left(x\right)=f\left(0\right)=c⋮7\left(1\right)\)
Với \(x=1\Rightarrow f\left(x\right)=f\left(1\right)=a+b+c⋮7\left(2\right)\)
Với \(x=-1\Rightarrow f\left(x\right)=f\left(-1\right)=a-b+c⋮7\left(3\right)\)
Từ \(\left(2\right)\left(3\right)\Rightarrow f\left(1\right)-f\left(-1\right)=a+b+c-a+b-c⋮7\)
\(\Rightarrow2b⋮7\Rightarrow b⋮7\)
Vì \(a+b+c⋮7\) mà \(b⋮7;c⋮7\Rightarrow a⋮7\)
Vậy \(a,b,c⋮7\)
vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5
có p(0) chí hết cho 5
=>a.03+b.02+c.0+d chia hết cho 5
=> d chia hết cho 5
có p(1) chia hết cho 5
=>a.13+b.12+c.1+d chia hết cho 5
=>a+b+c+d chia hết cho 5
mà d chia hết cho 5
=>a+b+c chia hết cho 5 (1)
có p(-1) chia hết cho 5
=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5
=>-a+b-c+d chia hết cho 5
mà d chia hết cho 5
=>-a+b-c chia hết cho 5 (2)
Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5
=> 2b chia hết cho 5
mà ucln(2,5)=1
=> b chia hết cho 5
mà a+b+c chia hết cho 5
=> a+c chia hết cho 5 (3)
có p(2) chia hết cho 5
=>a.23+b.22+c.2+d chia hết cho 5
=> 8a + 4b+2c+d chia hết cho 5
mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)
=>8a+2c chia hết cho 5
=>2(4a+c) chia hết cho 5
mà ucln(2,5)=1
=>4a+c chia hết cho 5 (4)
Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5
=> 3a chia hết cho 5
ma ucln(3,5)=1
=> a chia hết cho 5
mà a+c chia hết cho 5
=> c chia hết cho 5
Vậy a,b,c,d chia hết cho 5
vì p(x) chia hết cho 5 với mọi x nguyên => p(0), p(1),p(-1),p(2) chia hết cho 5
có p(0) chí hết cho 5
=>a.03+b.02+c.0+d chia hết cho 5
=> d chia hết cho 5
có p(1) chia hết cho 5
=>a.13+b.12+c.1+d chia hết cho 5
=>a+b+c+d chia hết cho 5
mà d chia hết cho 5
=>a+b+c chia hết cho 5 (1)
có p(-1) chia hết cho 5
=> a.(-1)3+b.(-1)2+c.(-1)+d chia hết cho 5
=>-a+b-c+d chia hết cho 5
mà d chia hết cho 5
=>-a+b-c chia hết cho 5 (2)
Từ (1) và (2) => (a+b+c) + (-a+b-c) chia hết cho 5
=> 2b chia hết cho 5
mà ucln(2,5)=1
=> b chia hết cho 5
mà a+b+c chia hết cho 5
=> a+c chia hết cho 5 (3)
có p(2) chia hết cho 5
=>a.23+b.22+c.2+d chia hết cho 5
=> 8a + 4b+2c+d chia hết cho 5
mà d chia hết cho 5, 4b chia hết cho 5(vì b chí hết cho 5)
=>8a+2c chia hết cho 5
=>2(4a+c) chia hết cho 5
mà ucln(2,5)=1
=>4a+c chia hết cho 5 (4)
Từ (3) và (4) => (4a+c)-(a+c) chia hết cho 5
=> 3a chia hết cho 5
ma ucln(3,5)=1
=> a chia hết cho 5
mà a+c chia hết cho 5
=> c chia hết cho 5
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100