Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)
\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)
b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)
c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)
\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)
Từ đề bài:A=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=8\cdot\dfrac{3}{4}=6\)
\(A=\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
\(=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}\\ =abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\ =8\cdot\dfrac{3}{4}\\ =6\)
bz-cy/a = cx- az /b = ay-bx /c => bxz-cxy / ax = cxy-azy / b = azy-bxz/c = bxz-cxy + cxy-azy+azy-bxz / a+b+c = 0/ a+b+c = 0
Suy ra : bz -cy/a = 0 => bz-cy=0 => bz = cy => z/c = b/y
cx-az/b = 0 => cx-az=0 => cx=az => x/a = z/c
ay-bx/c = 0 => ay-bx = 0 => ay=bx=> y/b = x/a
Vậy x/a=y/b=c/z
Ta có:
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)
\(\Leftrightarrow ab+ab=ac+bc\Leftrightarrow ab-bc=ac-ab\)
\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Ta có: \(\dfrac{1}{c}=\dfrac{1}{2}\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Leftrightarrow\dfrac{2}{c}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\)
\(\Leftrightarrow2ab=c\left(a+b\right)\)
\(\Leftrightarrow ab+ab-ca-cb=0\)
\(\Leftrightarrow ab-ca=cb-ab\)
\(\Leftrightarrow a\left(b-c\right)=b\left(c-a\right)\)
hay \(\dfrac{a}{b}=\dfrac{c-a}{b-c}\)
hay \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)(đpcm)
Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi
1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)
\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)
Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)
Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)
\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)
\(P=\dfrac{2+3+4+5+...+17}{2}\)
\(P=\dfrac{152}{2}=76\)
2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)
\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)
a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)
Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)
nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)
mà a+b+c=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)
Vậy: \(a=\dfrac{16}{35}\); \(b=\dfrac{24}{35}\); \(c=\dfrac{6}{7}\)
b) Ta có: 2a=3b=5c
nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)
mà a+b-c=3
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)
Do đó:
\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)
Vậy: \(a=\dfrac{45}{19}\); \(b=\dfrac{30}{19}\); \(c=\dfrac{18}{19}\)
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.
(1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2 + 2(1/ab + 1/bc + 1/ac) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2(bcac + abac + abbc)/(a2b2c2) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2abc(a + b + c)/(a2b2c2) = 4
<=> 1/a2 + 1/b2 + 1/c2 + 2 = 4
(vì abc(a + b + c) = a2 b2 c2)
<=> 1/a2 + 1/b2 + 1/c2 = 2