Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'_1=b^2-ac\) ; \(\Delta'_2=c^2-ab\); \(\Delta'_3=a^2-bc\)
\(T=\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)
\(T=\frac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(T=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) \(\forall a;b;c\)
\(\Rightarrow\) Luôn phải có ít nhất một trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm hay ít nhất một trong 3 pt có nghiệm
\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)
\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm
\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm
Lời giải:
Phản chứng. Giả sử PT đã cho không có nghiệm nào với mọi số thực $a,b,c$.
Điều này tương đương với các PT con
\((1):ax^2+2bx+c=0; (2):bx^2+2cx+a=0;(3): cx^2+2ax+b=0\)không có nghiệm với mọi $a,b,c\in\mathbb{R}$
\(\Rightarrow \left\{\begin{matrix}
\Delta'_1=b^2-ac< 0\\
\Delta'_2=c^2-ab< 0\\
\Delta'_3=a^2-bc< 0\end{matrix}\right.\)
\(\Rightarrow b^2-ac+c^2-ab+a^2-bc< 0\)
\(\Leftrightarrow 2b^2-2ac+2c^2-2ab+2a^2-2bc< 0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2< 0\) (vô lý với mọi $a,b,c$ thực)
Vậy điều giả sử là sai. Nghĩa là pt đã cho luôn có nghiệm với mọi $a,b,c\in\mathbb{R}$
Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
Xét pt (1) có \(\Delta'_1=a^2-bc\)
Xét pt (2) có \(\Delta'_2=b^2-ac\)
Xét pt (3) có \(\Delta'_3=c^2-ab\)
Có \(\Delta'_1+\Delta'_2+\Delta'_3=a^2+b^2+c^2-ab-bc-ca\)
\(\Rightarrow2\left(\Delta'_1+\Delta'_2+\Delta'_3\right)=2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'\ge0\)
Nên tồn tại ít nhất một trong 3 delta phải lớn hơn hoặc bằng 0
=> Tồn tại ít nhất một trong 3 pt đã cho có nghiệm
Vậy ...........