K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 7 2019
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)
KH
28 tháng 5 2017
Giải phương trình:
Đặt x2 + x + 1 = t, phương trình trở thành:
t (t + 1) = 12
<=> t2 + t - 12 = 0
<=> (t - 3)(t + 4) = 0
<=> t = 3 hoặc t = -4
* t = 3 => x2 + x + 1 = 3 <=> x2 + x - 2 = 0
Ta thấy a + b+ c = 1 + 1 - 2 = 0 => phương trình có 2 nghiệm x1 = 1, x2 = -2
* t = - 4 => x2 + x + 1 = - 4 <=> x2 + x + 5 = 0
\(\Delta\)= 1 - 4.5 = - 19 < 0 => phương trình vô nghiệm.
Vậy phương trình có 2 nghiệm là x = 1 và x = -2.
Xét pt (1) có \(\Delta'_1=a^2-bc\)
Xét pt (2) có \(\Delta'_2=b^2-ac\)
Xét pt (3) có \(\Delta'_3=c^2-ab\)
Có \(\Delta'_1+\Delta'_2+\Delta'_3=a^2+b^2+c^2-ab-bc-ca\)
\(\Rightarrow2\left(\Delta'_1+\Delta'_2+\Delta'_3\right)=2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'\ge0\)
Nên tồn tại ít nhất một trong 3 delta phải lớn hơn hoặc bằng 0
=> Tồn tại ít nhất một trong 3 pt đã cho có nghiệm
Vậy ...........