Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này còn không làm được à .
Giải :
Giả sử phân số \(\frac{21n+4}{14n+3}\)là một phân số chưa tối giản
Nên suy ra ( 21n + 4 ) và ( 14n + 3 ) cùng có một ước số nguyên tố a ( a > 1 )
Từ trên ta có :
- ( 21n + 4 ) \(⋮\)a ( 1)
- ( 14n + 3 ) \(⋮\)a ( 2)
Từ ( 1 ) và ( 2 ) suy ra:
\(\left(21n+4\right)-\left(14n+3\right)⋮a\)
\(\Rightarrow21n+4-14n-3⋮a\)
\(\Rightarrow7n+1⋮a\)
\(\Leftrightarrow2\left(7n+1\right)⋮a\)
\(\Rightarrow14n+2⋮a\)
mà \(14n+3⋮a\)
\(\Rightarrow1⋮a\Leftrightarrow a=1\)( điều này vô lí )
=> Phân số \(\frac{21n+4}{14n+3}\)không thể rút gọn được nữa.
Gọi d là ƯCLN của \(21n+4;14n+3\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\left(1\right)\end{cases}}\)
\(\Rightarrow21n+4-14n-3⋮d\)
\(\Rightarrow7n+1⋮d\)
\(\Rightarrow2\left(7n+1\right)⋮d\)
\(\Rightarrow14n+2⋮d\left(2\right)\)
Lấy \(\left(1\right)-\left(2\right)\) ta được:\(1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrowđpcm\)
bài 1 nè
\(\frac{a}{5}-\frac{1}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{1}{b}=\frac{a}{5}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a}{15}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a-2}{15}\)
\(\Rightarrow\left(3a-1\right).b=1.15=15=1.15=3.5\)
rồi sau đó lập bảng và viết kết quả nhé
Dặt d =(A=15n2+8n+6;B=30n2+21n+13)
=> A;B cùng chia hết cho d
B-2A=30n2+21n+13- 30n2-16n -12 =5n+1 chia hết cho d
=> d =5n+1 hoặc d =1
+d =5n+1; nhưng A không chia hết ch o 5n+1 loại
Vậy d =1
=> Phân thức A/B là tối giản.
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
Đặt d=ƯCLN(12n+1;30n+2)
=>12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản
Bài 1:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)
\(=\frac{9}{41}-\frac{206}{375}=\)
Đặt UCLN(2n + 1 ; 3n + 2) = d
2n +1 chia hết cho d < = > 6n + 3 chia hết cho d
3n + 2 chia hết cho d < = > 6n + 4 chia hết cho d
<= > [(6n + 4) - (6n + 3)] chia hết cho d
1 chia hết cho d
< = > d = 1
VẬy P là phân số tối giản
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
\(\frac{6n+5}{8n+7}\)là phân số tối giản khi và chi r khi
6n + 5 và 8n + 7 nguyên tố cùng nhau
gọi ước chung lớn nhất của 6n + 5 và 8n + 7 là d
ta có 6n + 5 chia hết cho d
=> 4( 6n+ 5) chia hết cho d
hay 24n + 20 chia hết cho d
ta cũng có 8n+ 7 chia hết cho d
nên 3( 8n+7) chia hết cho d
hay 24n + 21 chia hết cho d
nên ( 24n+21) - ( 24n + 20) chia hết cho d
=> 24n + 21 - 24n -20 chia hết cho d
=> 1 chia hết cho d
=> d= 1
vậy 6n+ 5 và 8n +7 có ước chung lớn nhất là 1
hay 6n+ 5 và 8n +7 nguyên tố cùng nhau
vậy \(\frac{6n+5}{8n+7}\) là phân số tối giản với mọi số nguyên n
Gọi d là ƯCLN(12n+1;30n+2)
Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà \(n\in N\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản ĐPCM
Giải:
Gọi d = UCLN ( 12n + 1; 30n + 2 )
Ta có:
\(12n+1⋮d\)
\(\Rightarrow5\left(12n+1\right)⋮d\)
\(\Rightarrow60n+5⋮d\)
\(30n+2⋮d\)
\(\Rightarrow2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+4⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)
Vì \(d\in N\) nên d = 1
Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.
\(\Rightarrowđpcm\)
Gọi ƯC(21n+4,14n+3)=d
21n+4 chia hết cho d
=>2.(21n+4)=42n+8 chia hết cho d
14n+3 chia hết cho d
=>3.(14n+3)= 42n+6 chia hết cho d
=>42n+8-42n-6 chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)=(1,2)
Lại có: 14n+3 choa hết cho d
=>2.(7n+1)+1 chia hết cho d
mà 2.(7n+1)+1 là số lẻ
=>d không chia hết cho 2
=>d khác 2
=>d=1
=>ƯC(21n+4,14n+3)=1
=>Phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
=>ĐPCM
Gọi ƯC(21n+4,14n+3)=d
21n+4 chia hết cho d
=>2.(21n+4)=42n+8 chia hết cho d
14n+3 chia hết cho d
=>3.(14n+3)= 42n+6 chia hết cho d
=>42n+8-42n-6 chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)=(1,2)
Lại có: 14n+3 choa hết cho d
=>2.(7n+1)+1 chia hết cho d
mà 2.(7n+1)+1 là số lẻ
=>d không chia hết cho 2
=>d khác 2
=>d=1
=>ƯC(21n+4,14n+3)=1
=>Phân số 21n+414n+3 là phân số tối giản
=>ĐPCM