\(\frac{21n+4}{14n+3}\) Là phân số tối giản vs n  thuộc N

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

Gọi ƯC(21n+4,14n+3)=d

21n+4 chia hết cho d

=>2.(21n+4)=42n+8 chia hết cho d

14n+3 chia hết cho d

=>3.(14n+3)= 42n+6 chia hết cho d 

=>42n+8-42n-6 chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Lại có: 14n+3 choa hết cho d

=>2.(7n+1)+1 chia hết cho d

mà 2.(7n+1)+1 là số lẻ

=>d không chia hết cho 2

=>d khác 2

=>d=1

=>ƯC(21n+4,14n+3)=1

=>Phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản

=>ĐPCM

13 tháng 1 2018

Gọi ƯC(21n+4,14n+3)=d

21n+4 chia hết cho d

=>2.(21n+4)=42n+8 chia hết cho d

14n+3 chia hết cho d

=>3.(14n+3)= 42n+6 chia hết cho d 

=>42n+8-42n-6 chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Lại có: 14n+3 choa hết cho d

=>2.(7n+1)+1 chia hết cho d

mà 2.(7n+1)+1 là số lẻ

=>d không chia hết cho 2

=>d khác 2

=>d=1

=>ƯC(21n+4,14n+3)=1

=>Phân số 21n+414n+3 là phân số tối giản

=>ĐPCM

1 tháng 3 2019

Bài này còn không làm được à .

Giải :

Giả sử phân số \(\frac{21n+4}{14n+3}\)là một phân số chưa tối giản

Nên suy ra ( 21n + 4 ) và ( 14n + 3 ) cùng có một ước số nguyên tố a ( a > 1 )

Từ trên ta có : 

  • ( 21n + 4 ) \(⋮\)a               ( 1)
  • ( 14n + 3 ) \(⋮\)a               ( 2)

Từ ( 1 ) và ( 2 ) suy ra:

\(\left(21n+4\right)-\left(14n+3\right)⋮a\)

\(\Rightarrow21n+4-14n-3⋮a\)

\(\Rightarrow7n+1⋮a\)

\(\Leftrightarrow2\left(7n+1\right)⋮a\)

\(\Rightarrow14n+2⋮a\)

mà \(14n+3⋮a\)

\(\Rightarrow1⋮a\Leftrightarrow a=1\)( điều này vô lí )

=> Phân số \(\frac{21n+4}{14n+3}\)không thể rút gọn được nữa.

2 tháng 3 2019

Gọi d là ƯCLN của \(21n+4;14n+3\)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\left(1\right)\end{cases}}\)

\(\Rightarrow21n+4-14n-3⋮d\)

\(\Rightarrow7n+1⋮d\)

\(\Rightarrow2\left(7n+1\right)⋮d\)

\(\Rightarrow14n+2⋮d\left(2\right)\)

Lấy \(\left(1\right)-\left(2\right)\) ta được:\(1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)

9 tháng 9 2017

bài 1 nè
\(\frac{a}{5}-\frac{1}{b}=\frac{2}{15}\)
\(\Rightarrow\frac{1}{b}=\frac{a}{5}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a}{15}-\frac{2}{15}\)\(\Rightarrow\frac{1}{b}=\frac{3a-2}{15}\)
\(\Rightarrow\left(3a-1\right).b=1.15=15=1.15=3.5\)

rồi sau đó lập bảng và viết kết quả nhé

9 tháng 9 2017

khó hiểu quá

17 tháng 11 2015

Dặt d =(A=15n2+8n+6;B=30n2+21n+13)

=> A;B cùng chia hết cho d

B-2A=30n2+21n+13- 30n2-16n -12 =5n+1 chia hết cho d

=> d =5n+1 hoặc d =1

+d =5n+1; nhưng A không chia hết ch o 5n+1  loại

Vậy d =1

=> Phân thức A/B là tối giản.

17 tháng 11 2015

mk cũng muốn giúp bn lắm nhưng mk mới học lớp 6

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm

9 tháng 7 2017

Đặt d=ƯCLN(12n+1;30n+2)

=>12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d; 60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản 

8 tháng 7 2017

Bài 1:

\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)

\(=\frac{9}{41}-\frac{206}{375}=\)

22 tháng 12 2015

Đặt UCLN(2n + 1 ; 3n  + 2) = d

2n  +1 chia hết cho d < = > 6n  + 3 chia hết cho d

3n + 2 chia hết cho d < = > 6n + 4 chia hết cho d 

<=  > [(6n + 4) - (6n + 3)] chia hết cho d

1 chia hết cho d

< = > d = 1

VẬy P là phân số tối giản

16 tháng 8 2019

Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!

Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)

\(\Rightarrow kn\)có thể bằng \(0\)

\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)

\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản

Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)

Chắc vậy !!! 

13 tháng 12 2016

\(\frac{6n+5}{8n+7}\)là phân số tối giản khi và chi r khi

 6n + 5 và 8n + 7 nguyên tố cùng nhau

gọi ước chung lớn nhất của 6n + 5 và 8n + 7 là d

ta có 6n + 5 chia hết cho d

=> 4( 6n+ 5) chia hết cho d

hay 24n + 20 chia hết cho d

ta cũng có 8n+ 7 chia hết cho d

nên 3( 8n+7) chia hết cho d

hay 24n + 21 chia hết cho d

nên ( 24n+21) - ( 24n + 20) chia hết cho d

=> 24n + 21 - 24n -20 chia hết cho d

=> 1 chia hết cho d

=> d= 1

vậy 6n+ 5 và 8n +7 có ước chung lớn nhất là 1

hay 6n+ 5 và 8n +7 nguyên tố cùng nhau

vậy \(\frac{6n+5}{8n+7}\) là phân số tối giản với mọi số nguyên n

17 tháng 8 2016

Gọi d là ƯCLN(12n+1;30n+2)

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

           \(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà \(n\in N\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản              ĐPCM

17 tháng 8 2016

Giải:

Gọi d = UCLN ( 12n + 1; 30n + 2 )

Ta có: 

\(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)

\(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)

Vì \(d\in N\) nên d = 1

Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.

\(\Rightarrowđpcm\)