Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD
Ta cần cm SFGH=12SABCDSFGH=12SABCD
SFGH=SFAD−SFAG−SFDH−SAGD−SDGHSFGH=SFAD−SFAG−SFDH−SAGD−SDGH
=SFAD−12(SFAC+SFBD)−12SACD−12SDGB=SFAD−12(SFAC+SFBD)−12SACD−12SDGB
=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)=SACD+SABC+SFBC−12(SABC+SFBC+SDBC+SFBC)−12SACD−12(SACD+SABC−SADG−SABG−SBDC)
=12(SADG+SABG)=12.12(SACD+SABC)=14SABCD
gợi ý thôi chứng minh thì mình hơi ngại
Bạn nối hai đường chéo và vẽ 2 đường vuông góc từ 2 đỉnh đối nhau xuống cùng 1 đường chéo
Tích của đường vuông góc đo với đường chéo chia 2 là S tam giác
Tổng S 2 tâm giác đó là S tứ giác
Đường chéo còn lại chia làm 2 phần và mỗi phần đều dài hơn hoặc bằng 2 đường vuông góc
(bằng <=> 2 đường chéo vuông góc)
rồi bạn suy luận tiếp đi
c/m1:
gọi O là giao điểm của 2 đường chéo trong tứ giác , gọi tên của tứ giác đó là tứ giác ABCD:
Trong Δ OAB có :
OA+OB>AB
Trong Δ OBC có :
OB+OC>BC
Trong Δ OAD có :
OD+OA>AD
Trong Δ OCD có :
OC+OD>CD
Ta có 4 bất đẳng thức:
2OB+2OC+2OA+2OD<AB+BC+CD+DA
<=>2BD+2AC>1/2p
<=>BD+AC> 1/2p
Vậy tổng 2 đường chéo trong 1 tứ giác luôn lớn hơn nửa chu vi (đpcm)
p : là nửa chu vi
c/m2:
Vẫn sử dụng tứ giác ABCD
do AC<p và BD<p
<=>AC+BD<2p
vậy tổng 2 đường chéo nhỏ hơn chu vi của tứ giác(đpcm)
Đúng rồi, có sai chỗ: 2OB+2OC+2OA+2OD<AB+BC+CD+DA
chỗ đó dùng dấu > này chứ.
A B C D O
+) Tam giác AOB và AOD có chung chiều cao hạ từ A xuống BD => S(AOB)/ S(AOD) = OB/OD
+) Tam giác COB và COD có chung chiều cao hạ từ C xuống BD => S(COB)/ S(COD) = OB/OD
=> S(AOB)/S(AOD) = S(COB)/ S(COD)
=> S(AOB). S(COD) = S(AOD).S(COB)
=> S(AOB).S(BOC).S(COD). (DOA) = [S(AOD).S(COB)]2 là số chính phương Vì S(AOD) và S(COB) nguyên
=> đpcm
Bạn nối hai đường chéo và vẽ 2 đường vuông góc từ 2 đỉnh đối nhau xuống cùng 1 đường chéo
Tích của đường vuông góc đo với đường chéo chia 2 là S tam giác
Tổng S 2 tâm giác đó là S tứ giác
Đường chéo còn lại chia làm 2 phần và mỗi phần đều dài hơn hoặc bằng 2 đường vuông góc
(bằng <=> 2 đường chéo vuông góc)
rồi suy luận tiếp đi
Nguồn: Search
khó quá k bít làm