Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì số chia là $19$ nên số dư $r<19$.
Mà $r$ là 1 số tự nhiên khác $0$ và chia hết cho $9$ nên $r$ có thể là $9$ hoặc $18$
Nếu $r=9$ thì: $a=19\times 68+9=1301$
Nếu $r=18$ thì $a=19\times 68+18=1310$
số tự nhiên=STN
a,STN chia hết cho 3 và 9 mà có 3 chữ số
STN chia hết cho 9 thì chia hết cho 3
=>số bắt đầu là 108 và số kết thúc là 999
Ta có 2 STN chia hết cho 9 liên tiếp cách nhau 9 đơn vị
=>Vậy số lượng số chia hết cho 9 và 3 mà có 3 chữ số là:
(999-108):9+1=100(số)
b,STN chia hết cho 2 mà không chia hết cho 5
=> chia hết cho 10
=>tận cùng là 0
Ta có số bắt đầu là 100 và số kết thúc là 990
Ta có 2 số liên tiếp chia hết cho 10 cách nhau 10 đơn vị
=>Vậy số lượng số chia hết cho 10 có 3 chữ số là:
(990-100):10+1=90(số)
c,STN chia hết cho 6 mà có 3 chữ số thì bắt đầu là số 102 và kết thúc là số 990
Mà 2 số liên tiếp chia hết cho 6 cách nhau 6 đơn vị
=>số lượng số chia hết cho 6 mà có 3 chữ số là:
(990-102):6+1=149 số
\(3^{n+2}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^n\times3\times4+2^n\times4\times3\)
\(=12\left(3^n+2^n\right)\)
vì 12 chia hết cho 6 nên 3n+2+3n+1+2n+3+2n+2 chia hết cho 6
Nếu x là ước của x + 10
Thì x + 10 phải chi hết x
<=> 10 chia hết cho x
=> x thuộc Ư(10)
=> Ư(10) = {1;2;5;10}
Vì xx có 4 trường hợp nên có 4 lần tuổi Việt là ước của tuổi Nam
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65