\(a^3b-ab^3\)chia hết cho \(6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Ta có: \(a^3b-ab^3\)

\(=a^3b-ab-ab^3+ab\)

= \(ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\)

Mà 3 số tự nhiên liên tiếp luôn chia hết cho 6

=> \(ab\left(a-1\right)\left(a+1\right)⋮6,ab\left(b-1\right)\left(b+1\right)⋮6\)

=> \(a^3b-b^3a⋮6\Rightarrowđpcm\)

7 tháng 11 2017

ta có: ab(a2)-ab(b2) = (ab - ab) (a2-b2) = 0 (a2 - b2)

=> 0 (a2 - b2) = 0

=>a3b - ab3 =0 mà 0:6

=>a3b -ab3 :6

bước đầu là phân tích đa thức thành nhân tử

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

23 tháng 4 2017

\(A< B\\ 3A< 3B\\ 3A+4< 3B+4\\\)

\(3B+4< 3B+5\Rightarrow3A+4< 3B+5\)

\(A< B\\ -A>-B\\ -A+3>-B+3\)

\(-A+6>-A+3\Rightarrow-A+6>-B+3\\ \Leftrightarrow6-A>3-B\)

20 tháng 7 2018

Hỏi đáp Toán

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )