\(3A+4< 3B+5\) VÀ \(6-A>3-B\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

\(A< B\\ 3A< 3B\\ 3A+4< 3B+4\\\)

\(3B+4< 3B+5\Rightarrow3A+4< 3B+5\)

\(A< B\\ -A>-B\\ -A+3>-B+3\)

\(-A+6>-A+3\Rightarrow-A+6>-B+3\\ \Leftrightarrow6-A>3-B\)

22 tháng 4 2017

a) Từ a + 5 < b + 5

=> a + 5 + (-5) < b + 5 + (-5) (cộng hai vế với -5)

=> a < b

Giải bài 13 trang 40 SGK Toán 8 Tập 2 | Giải toán lớp 8

8 tháng 4 2021

a)từ a+5<b+5 ta cộng -5 vào 2 vế được a<b

b)từ -3a>-3b ta nhân 2 vế với -1/3 (tức là chia cả 2 vế cho -3) và -3a . -1/3< -3b . -1/3 sẽ được a<b

22 tháng 4 2017

a) Vì a < b

=> 3a < 3b (nhân hai vế với 3 > 0)

=> 3a + 1 < 3b + 1 (cộng hai vế với 1) (đpcm)

b) Vì a < b

=> -2a > -2b (nhân hai vế với -2 < 0)

=> -2a – 5 > -2b – 5 (cộng hai vế với -5) (đpcm)

15 tháng 3 2018

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

23 tháng 3 2023

a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)

Mặt khác: 3b + 5 > 3b + 2 (2)

Từ (1) và (2) suy ra: 3a + 5 > 3b + 2

b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)

Mặt khác: 2 – 4a < 3 – 4a (2)

Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b

21 tháng 9 2019

Áp dụng BĐT AM-GM cho 2 số dương, ta có:

\(\left(b+3c\right)+4\ge2\sqrt{4\left(b+3c\right)}=4\sqrt{b+3c}\\ \)

\(\Rightarrow\sqrt{b+3c}\le\frac{b+3c+4}{4}\)

\(\Rightarrow a\sqrt{b+3c}\le\frac{ab+3ac+4a}{4}\)

Tương tự ta có \(b\sqrt{c+3a}\le\frac{bc+3ab+4b}{4}\)

\(c\sqrt{a+3b}\le\frac{ac+3bc+4c}{4}\)

\(\Rightarrow a\sqrt{b+3c}+b\sqrt{c+3a}+c\sqrt{a+3b}\le\)\(\frac{4\left(ab+bc+ca\right)+4\left(a+b+c\right)}{4}\)\(=\frac{4\left(ab+bc+ac\right)+12}{4}\)

Ta có bổ đề:3(ab+bc=ca) \(\le\)(a+b+c)^2 => 3(ab+bc+ca) \(\le9\)=> \(\text{(ab+bc+ca)}\le3\)

=>\(a\sqrt{b+3c}+b\sqrt{c+3a}+c\sqrt{a+3b}\le\)\(\frac{4.3+12}{4}=6\left(đpcm\right)\)

Dấu "=" xảy ra <=>a=b=c=1

21 tháng 9 2019

Dùng điểm rơi a=b=1

Gọi M là biểu thức đầu bài ta có

\(M=\frac{3}{2}\sqrt{\left(3a+1\right).4}+\sqrt{\left(3b+1\right).4}\le\frac{3}{4}\left(3a+5\right)+\frac{1}{2}\left(3b+5\right)\)

\(=\frac{9a+6b}{4}+\frac{25}{4}=\frac{15}{4}+\frac{25}{4}=10\)

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

25 tháng 6 2019

17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3

Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7

\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3

\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)

25 tháng 6 2019

23) Cm rằng

a) a2+b2−2ab ≥0

Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)

b)\(\frac{a^2+b^2}{2}\) ≥ ab

Ta có: (a-b)2 ≥0 vs mọi a,b

\(\Leftrightarrow\) a2−2ab+b2 ≥0

\(\Leftrightarrow\) a2+b2 ≥ 2ab

\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)

c) a(a+2)<(a+1)2

Ta có: a(a+2)= a2+2a

(a+1)2 = a2 + 2a + 1

\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)

d) m2+n2+2 ≥ 2(m+n)

Ta có: (m-n)2 \(\ge\) 0

\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0

\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn

\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2

\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)

e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)

Ta có: (a - b)2 ≥ 0

\(\Leftrightarrow\) a2−2ab+b2 ≥ 0

\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0

\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0

\(\Leftrightarrow\) (a + b)2 ≥ 4ab

\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4

\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4

\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)

17 tháng 3 2019

a, \(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)

Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\a^2+ab+b^2=\left(a+\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\forall a;b\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)

Dấu "=" xảy ra khi a = b

b, \(a^3-3a^2+4a+1=a\left(a^2-4a+4\right)+a^2+1=a\left(a-2\right)^2+a^2+1>0\left(\forall a>0\right)\)

c, \(a^4+b^2+2-4ab=\left(a^4-2a^2b^2+b^4\right)+\left(2a^2b^2-4ab+2\right)\)

\(=\left(a^2-b^2\right)^2+2\left(ab-1\right)^2\ge0\)

\(\Rightarrow a^4+b^4+2\ge4ab\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=1\\a=b=-1\end{cases}}\)

18 tháng 3 2019

thank you nhá

5 tháng 5 2017

a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương

Ta có:

* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)

* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)

b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)

Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)

ab2<b3 (a<b)

\(\Rightarrow a^3< b^3\)