\(a^7b^3-a^3b^7\) chia hết cho 30

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Hỏi đáp Toán

2 tháng 6 2018

a) \(a^2-a=a\left(a-1\right)⋮2\) ( Tích 2 số nguyên liên tiếp ⋮ 2 )

b) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮3\)( Tích 3 số nguyên liên tiếp ⋮ 3)

c) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+5-4\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Ta có:

\(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\) tích 5 số nguyên liên tiếp ⋮ 5

5a (a-1)(a+1) ⋮ 5

Suy ra: a5 - a ⋮ 5

Câu d : Ta có :

\(a^7-a\)

\(=a\left(a^6-1\right)\)

\(=a\left(a^3-1\right)\left(a^3+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

Nếu : \(a=7k\) thì \(a\) chia hết cho 7

Nếu : \(a=7k-1\) thì \(a+1\) chia hết cho 7

Nếu : \(a=7k+1\) thì \(a-1\) chia hết cho 7

Nếu : \(a=7k+2\) thì \(a^2+a+1=49k^2+35k+7\) chia hết cho 7

Nếu : \(a=7k+3\) thì \(a^2-a+1=49k^2+35k+7\) chia hết cho 7

Vì mọi trường hợp đều chia hết cho 7 .

\(\Rightarrow a^7-a⋮7\left(đpcm\right)\)

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

a: \(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n^2+1\right)\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên \(\left(n-1\right)\left(n+1\right)\cdot n⋮3!\)

=>\(A⋮6\)(1)

Vì 5 là số nguyên tố nên \(n^5-n⋮5\)(Định lí Fermat nhỏ)

hay \(A⋮5\)(2)

Từ (1)và (2) suy ra \(A⋮30\)

b: Vì 7 là số nguyên tố nên \(a^7-a⋮7\)(Định lí Fermat nhỏ)

7 tháng 11 2017

Ta có: \(a^3b-ab^3\)

\(=a^3b-ab-ab^3+ab\)

= \(ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\)

Mà 3 số tự nhiên liên tiếp luôn chia hết cho 6

=> \(ab\left(a-1\right)\left(a+1\right)⋮6,ab\left(b-1\right)\left(b+1\right)⋮6\)

=> \(a^3b-b^3a⋮6\Rightarrowđpcm\)

7 tháng 11 2017

ta có: ab(a2)-ab(b2) = (ab - ab) (a2-b2) = 0 (a2 - b2)

=> 0 (a2 - b2) = 0

=>a3b - ab3 =0 mà 0:6

=>a3b -ab3 :6

bước đầu là phân tích đa thức thành nhân tử

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha