K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Ta có:

\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(\dfrac{a+\sqrt{a}+\sqrt{a}+1}{\sqrt{a}+1}\right)\left(\dfrac{\sqrt{a}-1-a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\dfrac{a+2\sqrt{a}+1}{\sqrt{a}+1}.\dfrac{-\left(a-2\sqrt{a}+1\right)}{\sqrt{a}-1}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\dfrac{-\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)

\(=-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\)

\(=-\left(a-1\right)\)

\(=1-a\)

\(\rightarrowđpcm\)

26 tháng 7 2018

\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) \(=\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right].\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

10 tháng 8 2018

1. \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}.\dfrac{4}{\sqrt{a}}\right)=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{-64\sqrt{a}}{a-4}\)Nếu nhân tu thứ 2 của phép tính là \(\sqrt{a}-\dfrac{4}{\sqrt{a}}\) thì kết quả của phép tính là -16 nha bạn

10 tháng 8 2018

2.\(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(1-\dfrac{1}{\sqrt{a}}\right)=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{-\left(1-\sqrt{a}\right)}{\sqrt{a}}=\dfrac{-2\sqrt{a}}{\left(1+\sqrt{a}\right)\sqrt{a}}=\dfrac{-2}{1+\sqrt{a}}\)\(\left(a>0,a\ne1\right)\)

\(=\dfrac{\sqrt{ab}-b-\sqrt{a}}{\sqrt{b}}\)

4 tháng 7 2023

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

4 tháng 7 2023

loading...  

1 tháng 8 2023

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\cdot\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{1^3-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\cdot\sqrt{a}\right)\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}\cdot\sqrt{a}\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(1+\sqrt{a}+a\right)\cdot\sqrt{a}\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\sqrt{a}+a+a\sqrt{a}\cdot\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)^2}\)

\(=\sqrt{a}+a+a\sqrt{a}\cdot\dfrac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=\dfrac{\sqrt{a}+a+a\sqrt{a}}{1+2\sqrt{a}+a}\)

6 tháng 2 2021

Với \(a\ge0,a\ne1\) ta có:

\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\\ =\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\\ =\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

21 tháng 9 2021

a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)

\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)

\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)

b) \(A=-2\sqrt{a}>-6\)

\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)

c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)

\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)

25 tháng 7 2018

đề sai

\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

=1-a

24 tháng 10 2023

a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)

\(=1-x\sqrt{x}-x\sqrt{x}\)

\(=1-2x\sqrt{x}\)

b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)

\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)

15 tháng 7 2021

a) \(\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}=\dfrac{\left(2+\sqrt{a}-\sqrt{a}-1\right)\left(2+\sqrt{a}+\sqrt{a}+1\right)}{2\sqrt{a}+3}\)

\(=\dfrac{1.\left(2\sqrt{a}+3\right)}{2\sqrt{a}+3}=1\)

b) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\dfrac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right).\dfrac{1}{\left(\sqrt{a}+1\right)^2}=\left(a+2\sqrt{a}+1\right).\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1\)

15 tháng 7 2021

a, \(VT=\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}=\dfrac{a+4\sqrt{a}+4-a-2\sqrt{a}-1}{2\sqrt{a}+3}\)

\(=\dfrac{2\sqrt{a}+3}{2\sqrt{a}+3}=1=VP\)

Vậy ta có đpcm 

b, \(VT=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2=\dfrac{\left(1+\sqrt{a}\right)^2}{\left(1+\sqrt{a}\right)^2}=1=VP\)

Vậy ta có đpcm