Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1-a\sqrt{a}}{1-a\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(dkxd:a\ge0,a\ne1\right)\)
\(=\left(1+\sqrt{a}\right).\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)
\(=\dfrac{\left(1-a\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)
\(=\dfrac{1-\sqrt{a}}{1-a}\)
Vậy \(A=\dfrac{1-\sqrt{a}}{1-a}\) với \(a\ge0,a\ne1\)
a: Ta có: \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{\sqrt{x}-1+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{1}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{x+4}{\sqrt{x}}\)
b: Để A=5 thì \(x+4=5\sqrt{x}\)
\(\Leftrightarrow x=16\)
a. \(A=\left(1+\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-x}\right)+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1-\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{-\sqrt{x}}+\dfrac{5}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{5}{\sqrt{x}}=\dfrac{x-1+5}{\sqrt{x}}=\dfrac{x+4}{\sqrt{x}}\)
b. \(A=5\Leftrightarrow\dfrac{x+4}{\sqrt{x}}=5\Leftrightarrow x+4=5\sqrt{x}\Leftrightarrow x-5\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)
Vậy tất cả các x thỏa ycbt là x=1 hoặc x=16
c. \(A>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}>4\Leftrightarrow\dfrac{x+4}{\sqrt{x}}-4>0\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}}>0\)
Vì \(\left(\sqrt{x}-2\right)^2\ge0\forall x\) nên \(\left\{{}\begin{matrix}\sqrt{x}-2\ne0\\\sqrt{x}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x>0\end{matrix}\right.\)
Vậy tất cả các x thỏa mãn ycbt là x>0 và \(x\ne4\)
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\left(x+\sqrt{x}\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(x+\sqrt{x}\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\cdot\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{x-1}=\dfrac{2x}{x-1}\)
b: Để Q là số nguyên thì \(2x⋮x-1\)
=>\(2x-2+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;2;3\right\}\)
\(a,A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
\(=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{2^2-\sqrt{3}^2}\)
\(=\dfrac{4}{1}=4\)
Vậy \(A=4\)
\(b,B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\left(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) với \(x>0,x\ne1\)
a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)
b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
b, với x > 0
\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)
\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)