Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
1/2 + 1/4 +1/8 + 1/16 + 1/32 +1/64 + 1/128
=127/128
dấu gạch chéo này là dấu gạch ngang của phân số
Ta có: 1/2*2 < 1/1*2 = 1 - 1/2
1/3*3 < 1/2*3 = 1/2 -1/3
1/4*4 < 1/3*4 = 1/3 - 1/4
..................................
1/10*10 < 1/9*10 = 1/9 - 1/10
=> 1/2*2 + 1/3*3 + 1/4*4 + ... + 1/10*10 < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10 = 1 - 1/10 = 9/10 < 1.
=> 1/2*2 + 1/3*3 + 1/4*4 + ... + 1/10*10 < 1.
\(A=1-\frac{499}{500}+1-\frac{500}{501}+1-\frac{501}{502}+...+1-\frac{598}{599}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{499}{500}+\frac{500}{501}+\frac{501}{502}+...+\frac{598}{599}\right)\)
\(=...\)
Đặt A = 1/3 + 1/7 + 1/13 + 1/21 + ... + 1/91 + 1/111
A < 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/90 + 1/110
A < 1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/9×10 + 1/10×11
A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10 + 1/10 - 1/11
A < 1 - 1/11 < 1
=> đpcm
Ủng hộ mk nha ☆_☆^_-
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
\(\Rightarrowđpcm\)