K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}

27 tháng 7 2020

\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

Tương tự:

\(\sqrt{\frac{b}{c+a}}\le\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\le\frac{2c}{a+b+c}\)

\(\Rightarrow LHS\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Tuy nhiên đẳng thức ko xảy ra :p

28 tháng 7 2020

a) \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left[\left(a+\frac{1}{4}\right)+\left(b+\frac{1}{4}\right)\right]\)\(\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=a\sqrt{b}+b\sqrt{a}\)

26 tháng 10 2020

impostor

26 tháng 10 2020

Vì a, b, c là độ dài ba cạnh của tam giác suy ra :a,b, c >0

Áp dụng bđt cosi ta có

\(a^2+bc\ge2a\sqrt{bc}\)

\(b^2+ac\ge2b\sqrt{ac}\)

\(c^2+ab\ge2c\sqrt{ab}\)

Suy ra 

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\left(1\right)\)

Theo bđt cosi \(\frac{a+b}{2}\ge\sqrt{ab}\)

do đó  (1) \(\Leftrightarrow\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\le\frac{1}{2}\left(\frac{\frac{b+c}{2}+\frac{a+c}{2}+\frac{a+b}{2}}{abc}\right)\)

\(=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=\frac{a+b+c}{2abc}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\left(đpcm\right)\)

14 tháng 4 2020

Kiểm tra lại đề nhé! 

Em thử cho a = b = c xem sao?

14 tháng 4 2020

sửa số 2 thành số 8 nha

30 tháng 6 2015

\(\frac{a}{b}

30 tháng 6 2015

\(\frac{a}{b}

14 tháng 7 2018

câu 2:

= 6/13

14 tháng 7 2018

Các bạn nêu rõ cách làm từng bài giúp mình nhé! Thanks ^-^!