Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+.....+\frac{n^2-1}{n^2}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+....+\frac{n^2-1}{n^2}\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}\right)\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}\right)\)
Mà \(0< \frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}< 1\) ( không biết chứng minh thì ib )
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}\) không là số nguyên => đpcm
Ta có 1<2
=>1.2<2^2
=>1/(2^2)<1/(1.2)
Tương tự chứng minh 1/3^2<1/(2.3)
......
1/2013^2<1/(2012.2013)
=>1/2^2+1/3^2+...+1/2013^2<1/(1.2)+1/(...
=>1/2^2+1/3^2+...+1/2013^2<1-1/2+1/2-1...
=>1/2^2+1/3^2+...+1/2013^2<1-1/2013 (1)
Do 1/2013>0
=>1-1/2013<1 (2)
Từ (1),(2) => 1/2^2+1/3^2+...+1/2013^2<1
ĐẶT: \(A=1^2+2^2+3^2+....+n^2\)
\(=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+.....+n.\left(n+1-1\right)\)
\(=1.2-1+2.3-2+3.4-3+.....+n.\left(n-1\right)-n\)
\(=\left[1.2+2.3+3.4+....+n.\left(n+1\right)\right]-\left(1+2+3+...+n\right)\)
\(=\frac{n.\left(n+1\right).\left(n+2\right)}{3}-\frac{n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right).\left(n+\frac{2}{3}-\frac{1}{2}\right)\)
= \(n.\left(n+1\right).\left(\frac{2n+4}{3}-\frac{1}{2}\right)\)
\(=n.\left(n+1\right).\frac{2n+4-3}{6}\)
\(=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\)
Đặt \(M=1^2+2^2+3^2+...+n^2\)
\(M=1.1+2.2+3.3+...+n.n\)
\(M=\left(0+1\right)1+\left(1+1\right)2+\left(2+1\right)3+...+\left(n-1+1\right)n\)
\(M=0.1+1.1+1.2+1.2+2.3+1.3+...+\left(n-1\right)n+1.n\)
\(M=\left(0.1+1.2+2.3+...+\left(n-1\right)n\right)+\left(1.1+1.2+1.3+...+1.n\right)\)
\(M=\left(1.2+2.3+...+\left(n-1\right)n\right)+\left(1+2+3+...+n\right)\)
Đặt A=(2.3+3.4+...+(n-1)n và B=1+2+3+...+n rồi tự chứng minh được
\(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\left(1\right)\)
Với \(n=2\), BĐT \(\left(1\right)\) trở thành \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}>\sqrt{2}\) (đúng)
Giả sử \(\left(1\right)\) đúng với \(n=k\), nghĩa là \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}>\sqrt{k}\left(2\right)\)
Ta chứng minh \(\left(1\right)\) đúng với \(n=k+1\). Thật vậy, từ \(\left(2\right)\) suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k}+\dfrac{1}{\sqrt{k+1}}\)
Vì \(\sqrt{k}+\dfrac{1}{\sqrt{k+1}}=\dfrac{\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}>\sqrt{k+1}\)
Nên \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}>\sqrt{k+1}\)
Tức là \(\left(1\right)\) đúng với \(n=k+1\).
Theo nguyên lí quy nạp, (1) đúng với mọi số tự nhiên \(n>1\)
BT1:Chứng tỏ rằng các cặp số sau không đồng thời là nguyên tố: \(2^n-1\) và \(2^n+1\) ( n \(\ge\) 3)
Ta có:
\(B=7^{n+1}+3\left(n+1\right)-1\)
\(=7.7^n+3n+2\)
\(=7.7^n+21n-18n-7+9\)
\(=\left(7.7^n+21n-7\right)-\left(18n-9\right)\)
\(=7\left(7^n+3n-1\right)-9\left(2n-1\right)\)
\(=7B-9\left(2n-1\right)\) (*)
Suy ra nếu B chia hết cho 9 thì \(7B-9\left(2n-1\right)\) cũng chia hết cho 9 (tức A cũng chia hết cho 9).
Ngược lại, nếu A chia hết cho 9 thì từ (*) suy ra \(7B=A+9\left(2n-1\right)\) cũng chia hết cho 9. Vì 7 và 9 là hai số nguyên tố cũng nhau nên B cũng chia hết cho 9.
Xét
-n = 1=> 7^1+3.1-1 = 9 chia hết cho 9
-n = 2 => 7^2+3.2-1 = 54 chia hết cho 9
- Giả sử A chia hết cho 9 đúng với n = k-1 nghĩa là 7k-1 +3(k -1)-1 chia hết cho 9. Ta chứng minh bài toán đúng với n = k.
- Với n = k:
=> A = 7k + 3k - 1 = 7[7k-1 + 3 (k-1) -1] +3
=7[7^(k-1)+3(k-1)-1]-18(k-1) + 9
Vì:
7^(k-1)+3(k-1)-1 chia hết cho 9
18(k-1) chia hết cho 9
9 chia hết cho 9
nên 7^k+3k-1 chia hết cho 9 (đpcm).
Ý B làm tương tự thôi .....còn lại bạn tự làm nhé ^^