K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

Đặt A = 3 + 32 + 33 + ... + 339 (có 39 số; 39 chia hết cho 3)

A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (337 + 338 + 339)

A = 3.(1 + 3 + 32) + 34.(1 + 3 + 32) + ... + 337.(1 + 3 + 32)

A = 3.13 + 34.13 + ... + 337.13

A = 13.(3 + 34 + ... + 337) chia hết cho 13 (1)

Lại có: A chia hết cho 3 (2)

Từ (1) và (2), mà (3;13)=1

=> A chia hết cho 39 (đpcm)

17 tháng 9 2016

A=3+32+...+339

=(3+32+33)+...+(337+338+339)

=3(1+3+32)+...+337(1+3+32)

=3*39+...+337*39

=39*(3+...+337) chia hết 39

Đpcm

12 tháng 7 2016

\(16^{10}+32:3\)

27 tháng 12 2015

\(16^{10}+32^7=\left(2^4\right)^{10}+\left(2^5\right)^7=2^{40}+2^{35}=2^{35}.2^5+3^{35}=2^{35}.\left(2^5+1\right)=2^{35}.33\)

chia hết cho 33

tick nhé

27 tháng 12 2018

bn Hoàng Phúc làm đúng r đó

30 tháng 1 2016

Ta có: A=32.32+25.2-32

           =32.32+32.2-32

          =32(32+2-1)

          =32.33             chia hết cho 33(đpcm)

15 tháng 12 2014

B=(16^10+32^7)

=(2^4)^10+(2^5)^7

=2^40+2^35

=2^35(2^5+1)

=2^35(32+1)

=2^35.33

=> B chia hết cho 33

=> 16^10+32^7 chia hết cho 33

30 tháng 6 2023

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

30 tháng 6 2023

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

13 tháng 7 2016

\(16^{10}+32=160000000000+32.\)

                    \(=160000000032\)

Vì 160000000032 chia hết cho 3 nên 1610 + 32 chia hết cho 3.

mình nhé.Mình cảm ơn nhiều,Bài này đúng 100%

24 tháng 5 2023

  C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324

3C =      32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325

3C - C = -325 - 3

2C      = -325 - 3

2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\)  + 3]

2C = - \(\overline{..6}\)

⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\) 

⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)

24 tháng 5 2023

b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0

Vì (\(x+1\))2022 ≥ 0 

\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0

Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0

⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:

(\(x,y\)) = (-1; 1)