Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh A = 4n + 15n - 10 \(⋮\) 9 với mọi n ∈ N
Chứng minh bằng quy nạp:
Với n = 0 ⇒ A = -9 \(⋮\) 9
Với n = 1 ⇒ A = 9 \(⋮\) 9
Giả sử 4n + 15n - 10 \(⋮\) 9, ta chứng minh 4n+1 + 15(n + 1) - 10 cũng \(⋮\) 9
Ta có:
4n + 15n - 10 \(⋮\) 9
⇒ 4n + 5 \(⋮\) 3
⇒ 3.4n + 15 \(⋮\) 9
⇒ (3.4n + 15) + (4n + 15n - 10) \(⋮\) 9
⇒ 4n+1 + 15(n + 1) - 10 \(⋮\) 9
⇒ đpcm
~Study well~
#ARMY + BLINK#
chứng minh theo pp quy nạp
chứng minh đúng với n=1
giả sử đúng với n=k
cần chứng minh đúng với n=k+1
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Ta có: A=32.32+25.2-32
=32.32+32.2-32
=32(32+2-1)
=32.33 chia hết cho 33(đpcm)
Ta thấy: 165 = 220
=> S = 165 + 215 = 220 + 215
= 215 . 25 + 215
= 215(25 + 1)
= 215.33
Vậy 165 + 215 chia hết cho 33