Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh : 11n+1 + 122n-1 (1) với mọi n \(\inℕ^∗\)bằng phương pháp quy nạp
Với n = 1 , ta có : 11n+1 + 122n-1 = 112 + 12 = 133
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k \(\inℕ^∗\), ta sẽ Chứng minh nó cũng đúng khi n = k + 1
Ta có :
11(k+1) + 1 + 122(k+1) - 1 = 11.(11k+1 + 122k-1) + 122k-1.(122 - 11)
= 11 . (11k+1 + 122k-1) + 133 . 122k -1 (2)
Mà 11k+1 + 122k-1 \(⋮\)133 nên từ (2) ta suy ra được : 11(k+1)+1 + 122(k+1) - 1 \(⋮\)133
Hay (1) đúng với n = k + 1
Từ các chứng minh trên => (1) đúng với mọi n \(\inℕ^∗\)
\(11^{n+1}+12^{2n-1}=11^n\cdot11+12\cdot12^{2n-2}=11^n\cdot11+12\cdot144^{n-1}\)
\(11^n\cdot11+\left(133-121\right)\cdot144^{n-1}=133\cdot144^{n-1}-121\cdot144^{n-1}+11^n\cdot11\)
\(=133\cdot144^{n-1}-144^{n-1}\cdot121+11^{n-1}\cdot121\)
\(=133\cdot144^{n-1}-121\left(144^{n-1}-11^{n-1}\right)\)
\(=133\cdot144^{n-1}-121\left(144-11\right)\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)
\(=133\cdot144^{n-1}-121\cdot133\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)
\(=133\left(144^{n-1}-121\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\right)⋮133\)
\(\Rightarrow11^{n+1}+12^{2n-1}⋮133\)(đpcm)
C1: Có: \(9.3^{4n}=9.81^n\equiv1.1^n\equiv1\left(mod4\right)\)
\(8.2^{4n}=8.4^{2n}\equiv8\left(-1\right)^{2n}\equiv0\left(mod4\right)\)
\(2019\equiv3\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv1-0+3\equiv0\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮4\) (1)
Có: \(9.3^{4n}=9.81^n\equiv4.1^n\equiv4\left(mod5\right)\)
\(8.2^{4n}=8.4^{2n}\equiv3.\left(-1\right)^{2n}\equiv3\left(mod5\right)\)
\(2019\equiv-1\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv0\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮5\) (2)
Từ (1) và (2) và (4;5)=1 ; 4.5=20
=> \(M=9.3^{4n}-8.2^{4n}+2019\) chia hết cho 20.
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với