K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

Ta có: A=n(n+1)(2n+1)

\(=n\left(n+1\right)\left(2n+2-1\right)\)

\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)

Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n\left(n+1\right)\left(n+2\right)⋮6\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)

hay \(\left(n-1\right)n\left(n+1\right)⋮6\)

\(\Leftrightarrow A⋮6\)

6 tháng 8 2021

bạn giải thk tý phân tích dc ko

21 tháng 3 2020

\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)

\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)

\(16\equiv1\left(mod3\right)\)

\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)

Vậy \(a⋮3,\forall n\inℤ^+\)

13 tháng 6 2021

Sai nha phải xét n=0 chứ tại 2^n với n =0 thì lẻ mà

10 tháng 2 2017

à thôi mn khỏi phải giải, mk làm đc r

12 tháng 2 2017

cậu chỉ ra mk xem cách giải cái  bài này nghĩ ma k ra  ak?

20 tháng 8 2016

Ta có:

n3 + 11n

= n3 - n + 12n

= n.(n2 - 1) + 12n

= n.(n - 1).(n + 1) + 12n

= (n - 1).n.(n + 1) + 12n

Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3

Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6

=> n3 + 11n chia hết cho 6 ( đpcm)

5 tháng 6 2015

n6 + n4 - 2n= n2 . (n3 + n2 + 2) chia hết cho 72...

Hì Hì