Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)
Ta thấy (1) chia hết cho 5 (2)
(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)
Ta chứng minh (1) chia hết cho 8
Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8
Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k2 + 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8
=> (1) chia hết cho 8 (4)
Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120
xem ở đây nè:
http://d.violet.vn//uploads/resources/733/3687956/preview.swf
bài 1 nhé
C1: Có: \(9.3^{4n}=9.81^n\equiv1.1^n\equiv1\left(mod4\right)\)
\(8.2^{4n}=8.4^{2n}\equiv8\left(-1\right)^{2n}\equiv0\left(mod4\right)\)
\(2019\equiv3\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv1-0+3\equiv0\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮4\) (1)
Có: \(9.3^{4n}=9.81^n\equiv4.1^n\equiv4\left(mod5\right)\)
\(8.2^{4n}=8.4^{2n}\equiv3.\left(-1\right)^{2n}\equiv3\left(mod5\right)\)
\(2019\equiv-1\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv0\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮5\) (2)
Từ (1) và (2) và (4;5)=1 ; 4.5=20
=> \(M=9.3^{4n}-8.2^{4n}+2019\) chia hết cho 20.
Ta có:
S = n n 4 + 5 n 3 + 5 n 2 − 5 n − 6 = n [ n 2 − 1 n 2 + 6 + 5 n n 2 − 1 ] = n ( n 2 − 1 ) ( n 2 + 5 n + 6 ) = n ( n − 1 ) ( n + 1 ) ( n + 2 ) ( n + 3 ) = ( n − 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta có S là tích của 5 số nguyên tự nhiên liên tiếp chia hết cho 5! nên chia hết cho 120.
\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)
\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)
Vậy \(a⋮3,\forall n\inℤ^+\)
Ta có:
n3 + 11n
= n3 - n + 12n
= n.(n2 - 1) + 12n
= n.(n - 1).(n + 1) + 12n
= (n - 1).n.(n + 1) + 12n
Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3
Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6
=> n3 + 11n chia hết cho 6 ( đpcm)
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với
ai bit lam ko