K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

dễ lắm :)

5 tháng 9 2017
Bạn làm mik hoang mang quá!
19 tháng 6 2015

a, Gọi AC giao BD tai O 

TAm giác OAB có

 OA + OB > AB (1)

Tam giác OCD có

 OC + OD > CD (2)

cộng vế với vế của (1) và (2) -=> AC + BD > AB + CD

18 tháng 8 2017

Mình cũng đồng ý với ý kiến của bạn

GH
18 tháng 7 2023

Bài 1:

a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

 

Bài 3:

Tứ giác ABCD có góc C + góc D = 90 độ . Chứng minh rằng AC^2 + BD^2 = AB^2 + CD^2 (ảnh 1)

Gọi O là giao điểm AD và BC.

Ta có ˆC+D=900�^+�⏜=900 nên ˆO=900�^=900

Áp dụng định lí Py – ta – go,

Ta có 

AC2=OA2+OC2.��2=��2+��2.

BD2=OB2+OD2��2=��2+��2

Nên AC2+BD2=(OA2+OB2)+(OC2+OD2)=AB2+CD2

15 tháng 7 2023

Bài 1: loading...

Gọi E là giao điểm của hai đường chéo AC và BD 

Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC 

                                  (AE + CE) + (BE + DE) > AB + DC

                                     AC + BD > AB + DC 

Tương tự ta có AC + BD > AD + BC 

Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.

Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)

Theo chứng minh trên ta có:

 \(\dfrac{AB+BC+CD+DA}{2}\)\(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)

Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:

AB + AD > BD 

AB + BC > AC

BC + CD > BD 

CD + AD > AC 

Cộng vế với vế ta có:

(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2

⇒AB + BC + CD + DA > BD + AC  (2)

Kết hợp (1) và (2) ta có:

Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác

 

 

 

9 tháng 8 2017

a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2 
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2 
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành 

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có: 
NP // BD và NP = BD/2 
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP 

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông) 

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD 
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau 
-------------

Nguồn:__|nobita|__

cách 2

a) Gọi QM giao AC tại F,AC giao BD tại K 
ta có QM là đường trung bình của tam giác ADB 
suy ra: QM// DB 
ta có MN là đường trung bình của tam giác ABC 
suy ra: MN// AC 
ta có PN là đường trung bình của tam giác BCD 
suy ra: PN// DB 
ta có PQ là đường trung bình của tam giác ADC 
suy ra: PQ// AC 
từ đó ta có : QM//PN(cùng song song DB) 
MN//PQ(cùng song song AC) 
suy ra MNPQ là hình bình hành 
QM//DB suy ra:góc AKB=góc AFM=90 độ 
MN//AC suy ra:góc AFM= góc FMN= 90 độ 
hình bình hành MNPQ có góc FMN=90 độ 
suy ra MNPQ là hình chữ nhật 
b)thuận:giả sử 
MNPQ là hình vuông 
suy ra MN=QM 
ta có MN là đường trung bình của tam giác ABC 
suy ra MN=1/2*AC 
ta có QM là đường trung bình của tam giác ADC 
suy ra QM=1/2*BD 
MN=QM 
suy ra BD= AC 
vậy tứ giác ABCD cần thêm điều kiện là AC=BD để MNPQ là hình vuông 

9 tháng 8 2017

thanks bạn mình k rùi đó