\(\frac{1}{3}\)+ \(\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Đặt :

\(A=\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}\)

\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{98}}\)

\(\Leftrightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow2A=1-\frac{1}{3^{99}}< 1\)

\(\Leftrightarrow A< \frac{1}{2}\left(đpcm\right)\)

7 tháng 7 2018

Đặt \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}\)

\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2C=1-\frac{1}{3^{99}}< 1\)

=> C = (1 - 1/399)/2 < 1/2

Vậy 1/3 + 1/32 + 1/33 + ....+ 1/399 < 1/2

2 tháng 6 2018

a. \(\frac{1}{2}\) - ( \(\frac{1}{3}\) + \(\frac{1}{4}\) ) < x < \(\frac{1}{48}\) - ( \(\frac{1}{16}\) - \(\frac{1}{6}\) )

     \(\frac{1}{2}\) - \(\frac{7}{12}\)               < x < \(\frac{1}{48}\) - \(\frac{-5}{48}\) 

                   \(\frac{-1}{12}\)           < x < \(\frac{1}{8}\) 

Đề bài yêu cầu tìm x thuộc tập hợp gì bạn ơi. Bạn viết thiếu rồi .

31 tháng 5 2018

cho thêm điều kiện x,y thuộc Z nữa nhá

\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

\(\frac{3}{x}=\frac{y-1}{3}\)

\(\Rightarrow x.\left(y-1\right)=9\)

Lập bảng ta có : 

x19-1-93-3
y-191-9-13-3
y102-804-2

Vậy ( x ; y ) = { ( 1 ; 10 ) ; ( 9 ; 2 ) ; ( -1 ; -8 ) ; ( -9 ; 0 ) ; ( 3 ; 4 ) ; ( -3 ; -2 ) }

mấy bài còn lại làm tương tự

14 tháng 8 2019

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)

\(A=1-\frac{1}{2^{99}}\)

18 tháng 7 2019

                                                                                   Bài giải

                                   Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)     ;    \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)        ; ..... ;             \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\)        \(^{\left(1\right)}\)

                        Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\)          ;         \(\frac{1}{3^2}>\frac{1}{3\cdot4}\)        ; ..... ;               \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)         \(^{\left(2\right)}\)       

Từ \(^{\left(1\right)}\) và \(^2\) 

       \(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\)      \(\left(ĐPCM\right)\)

18 tháng 7 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

              \(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)  

              \(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)

              \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

              \(=1-\frac{1}{9}=\frac{8}{9}\)

\(\Rightarrow A< \frac{8}{9}\left(1\right)\)

Ta có:    \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)

                 \(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)

                 \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

                 \(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A>\frac{2}{5}\left(2\right)\)

Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)

Các bạn nhớ k đúng mình nha (nếu đúng)

19 tháng 12 2017

Ta có :

M = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

3M = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3M - M = ( \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)) - ( \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\))

2M = \(1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow M=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

19 tháng 12 2017

3M=1+1/3+1/3^2+....+1/3^98

2M=3M-M=(1+1/3+1/3^2+....+1/3^98)-(1/3+1/3^2+....+1/3^99) = 1-1/3^99 < 1

=> M < 1/2

=> ĐPCM

k mk nha

30 tháng 10 2020

VIẾT SAI ĐỀ BÀI NHÉ

50<A<100

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)

\(\Rightarrow x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)

\(\Rightarrow x=\frac{231}{80}\)

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)

=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)

=> \(\frac{13}{36}x+\frac{8}{45}=0\)

=> \(\frac{13}{36}x=-\frac{8}{45}\)

=> \(x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)

=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)

=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)

=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)

=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)

30 tháng 5 2018

\(c)\)

\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=\left(7-\frac{1}{50}+x\right)\)

\(\Rightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\left(\frac{350}{50}-\frac{1}{50}+x\right)\)

\(\Rightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)

\(\Rightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)-x=\frac{349}{50}\)

\(\Rightarrow x-\left(1-\frac{1}{50}\right)=\frac{349}{50}\)

\(\Rightarrow x-\frac{49}{50}=\frac{349}{50}\)

\(\Rightarrow x=\frac{349}{50}+\frac{49}{50}\)

\(\Rightarrow x=\frac{199}{25}\)

Vậy \(x=\frac{199}{25}\)

~ Ủng hộ nhé 

30 tháng 5 2018

\(a)2.x-3=x+\frac{1}{2}\)

\(\Rightarrow2x-3-x=\frac{1}{2}\)

\(\Rightarrow x-3=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}+3\)

\(\Rightarrow x=\frac{1}{2}+\frac{6}{2}\)

\(\Rightarrow x=\frac{7}{2}\)

Vậy \(x=\frac{7}{2}\)

\(b)4.x-\left(2.x+1\right)=3-\frac{1}{3}+x\)

\(\Rightarrow4.x-2.x-1=\frac{9}{3}-\frac{1}{3}+x\)

\(\Rightarrow2.x-1=\frac{8}{3}+x\)

\(\Rightarrow2x-1-x=\frac{8}{3}\)

\(\Rightarrow x-1=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}+1\)

\(\Rightarrow x=\frac{8}{3}+\frac{3}{3}\)

\(\Rightarrow x=\frac{11}{3}\)

Vậy \(x=\frac{11}{3}\)

~ Ủng hộ nhé