Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)
\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)
Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)
\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến
Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)
\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)
\(P=sin^4x+cos^4x+2sin^2xcos^2x-\frac{1}{2}\left(2sinx.cosx\right)^2\)
\(P=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}sin^22x\)
\(P=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le P\le1\)
Đáp án B
\(\frac{1+sin^4x-cos^4x}{1-sin^6x-cos^6x}=\frac{1+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)}{1-\left(sin^2x+cos^2x\right)^2+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)}\)
\(=\frac{1+sin^2x-cos^2x}{1-1+3sin^2x.cos^2x}=\frac{\left(1-cos^2x\right)+sin^2x}{3sin^2x.cos^2x}=\frac{2sin^2x}{3sin^2x.cos^2x}=\frac{2}{3cos^2x}\)
\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)
*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng
*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)
\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)
Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) suy ra BĐT được chứng minh
Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)
x3+y3\(\geq\) x2y + xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0
Xét x=0,y=0 thì bất đẳng thức này luôn đúng.(*)
Xét x>0,y>0,ta có CM bất đẳng thức đó luôn đúng
x3+y3\(\geq\) x2y+xy2
\(\Leftrightarrow\) x3+y3-x2y-xy2\(\geq\)0
\(\Leftrightarrow\) (x3-x2y) + (y3-xy2) \(\geq\)0
\(\Leftrightarrow\) x2(x-y) - y2(x-y) \(\geq\) 0
\(\Leftrightarrow\) (x-y)(x2-y2) \(\geq\) 0
\(\Leftrightarrow\) (x-y)(x-y)(x+y) \(\geq\) 0
\(\Leftrightarrow\) (x-y)2(x+y) \(\geq\) 0 (1)
Ta có (x-y)2\(\geq\)0, x+y >0(vì x>0,y>0)
Nên bất phương trình (1); (x-y)2(x+y) \(\geq\) 0(luôn đúng)(**)
Từ(*) và (**) suy ra BĐT được chứng minh:
x3+y3\(\geq\) x2y+xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0
Dấu "=" xảy ra khi và chỉ khi x=y.
a,Áp dụng BĐT AM- GM cho các số không âm, ta có:
\(x^2+y^2z^2\ge2xyz\)
b,\(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\left(1\right)\)
Vì \(x^2+xy+y^2\ge0\) \(\Rightarrow\left(1\right)\) đúng
a) bpt <=> x2 - 2xyz + y2z2 ≥ 0
<=> (x - yz)2 ≥ 0 (luôn đúng)
Dấu "=" xảy ra <=> x = yz
b) bpt <=> x4 - xy3 + y4 - x3y ≥ 0
<=> x(x3 - y3) - y(x3 - y3) ≥ 0
<=> (x - y)2(x2 - xy + y2) ≥ 0
<=> (x - y)2[(x - \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2] ≥ 0 (luôn đúng)
Dấu "=" xảy ra <=> x = y
\(x^4+4x^3+6x^2+4x+1\)
\(=\left(x^4+2x^3+x^2\right)+\left(2x^3+4x^2+2x\right)+\left(x^2+2x+1\right)\)
\(=x^2\left(x^2+2x+1\right)+2x\left(x^2+2x+1\right)+\left(x^2+2x+1\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+2x+1\right)=\left(x+1\right)^4\ge0;\forall x\in R\)