Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)
\(\exists x\in R,x\le2\Rightarrow x^2\le4\)
\(\exists x\in R,x^2\le4\Rightarrow x\le2\)
Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha
Lập mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)
b) \(\forall x\in R,x>2\Rightarrow x^2>4\)
c) \(\forall x\in R,x^2>4\Rightarrow x>2\)
d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)
Cảm on nhiều ạ
a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)
b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)
c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)
e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)
f) Có một số thực \(x\) mà \(x^2+x+1>0\) (mệnh đề đúng)
a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)
b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)
c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)
e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
1) Bất đẳng thức cần chứng minh
\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu : ac + bd < 0 : BĐT luôn đúng
Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương
( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )
\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh
2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)
Từ câu 1) ta có :
\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)
\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)
\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
a,Áp dụng BĐT AM- GM cho các số không âm, ta có:
\(x^2+y^2z^2\ge2xyz\)
b,\(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\left(1\right)\)
Vì \(x^2+xy+y^2\ge0\) \(\Rightarrow\left(1\right)\) đúng
a) bpt <=> x2 - 2xyz + y2z2 ≥ 0
<=> (x - yz)2 ≥ 0 (luôn đúng)
Dấu "=" xảy ra <=> x = yz
b) bpt <=> x4 - xy3 + y4 - x3y ≥ 0
<=> x(x3 - y3) - y(x3 - y3) ≥ 0
<=> (x - y)2(x2 - xy + y2) ≥ 0
<=> (x - y)2[(x - \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2] ≥ 0 (luôn đúng)
Dấu "=" xảy ra <=> x = y
Câu 3:
a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
nên P(x) luôn là mệnh đề đúng
b: \(\Leftrightarrow x< =\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)
\(\Leftrightarrow\sqrt{x}-1< =0\)
=>0<=x<=1
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <.
thì phân tích thành nhân tử là oke
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)*đúng*
Ta có:\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)
\(P=sin^4x+cos^4x+2sin^2xcos^2x-\frac{1}{2}\left(2sinx.cosx\right)^2\)
\(P=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}sin^22x\)
\(P=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le P\le1\)
Đáp án B