Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi d=( 6n + 5 và 5n + 4 )
=> 6n+5 chia het cho d => 5(6n+5) chia het cho d => 30n+25 chia het cho d
=> 5n+4 chia het cho d => 6(5n+4) chia het cho d => 30n+24 chia het cho d
=> (30n+25 )-(30n+24) chia het cho d =>1 chia het cho d => d=1 => đpcm
tik nha
Gọi ƯCLN (2n+1,6n+1)=d.
Suy ra 2n+1 chia hết cho d và 6n+1 chia hết cho d.
Suy ra 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d.
Suy ra (6n+3)-(6n+1) chia hết cho d.
Suy ra 2 chia hết cho d hay d=1 hoặc 2.
Mà 2n+1 không chia hết cho 2 vì 2n+1 là số lẻ. Suy ra d=1.
Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.
a: Gọi d=ƯCLN(n+5;n+6)
=>\(\left\{{}\begin{matrix}n+5⋮d\\n+6⋮d\end{matrix}\right.\)
=>\(n+5-n-6⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(n+5;n+6)=1
=>n+5 và n+6 là hai số nguyên tố cùng nhau
b; Gọi d=ƯCLN(2n+3;3n+4)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
=>\(6n+9-6n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(2n+3;3n+4)=1
=>2n+3 và 3n+4 là hai số nguyên tố cùng nhau
c: Gọi d=ƯCLN(n+3;2n+7)
=>\(\left\{{}\begin{matrix}n+3⋮d\\2n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n+6⋮d\\2n+7⋮d\end{matrix}\right.\)
=>\(2n+6-2n-7⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(n+3;2n+7)=1
=>n+3 và 2n+7 là hai số nguyên tố cùng nhau
d: Gọi d=ƯCLN(3n+4;3n+7)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
=>\(3n+4-3n-7⋮d\)
=>\(-3⋮d\)
mà 3n+4 không chia hết cho 3
nên d=1
=>ƯCLN(3n+4;3n+7)=1
=>3n+4 và 3n+7 là hai số nguyên tố cùng nhau
e: Gọi d=ƯCLN(2n+5;6n+17)
=>\(\left\{{}\begin{matrix}2n+5⋮d\\6n+17⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+15⋮d\\6n+17⋮d\end{matrix}\right.\)
=>\(6n+15-6n-17⋮d\)
=>\(-2⋮d\)
mà 2n+5 lẻ
nên d=1
=>ƯCLN(2n+5;6n+17)=1
=>2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Gọi \(ƯCLN\left(4n+5;3n+4\right)\)là \(d\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}4n+5⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}3.\left(4n+5\right)⋮d\\4.\left(3n+4\right)⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}12n+15⋮d\\12n+16⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(12n+16\right)-\left(12n+15\right)⋮d\)
\(\Rightarrow\)\(12n+16-12n-15⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d=1\)
Vậy \(4n+5\)và \(3n+4\)luôn là hai số nguyên tố cùng nhau
giả sử 4n+5 và 3n+4 có ước chung là số nguyên tố d
khi đó ta có 4n+5 chia hết cho d =>3(4n+5)chia hết cho d =>12n+15 chia hết cho d
3n+4 chia hết cho d=>4(3n+4) chia hết cho d =>12n+16 chia hết cho d
từ 2 điều trên =>(12n+16)-(12n+5) chia hết cho d
=>1 chia hết cho d
=>d thuộc ước của 1
=> ước chung của 4n+5 và 3n+4 là 1 và -1
=>4n+5 và 3n+4 nguyên tố cúng nhau
Đặt \(d=\left(4n+2,6n+1\right)\).
\(\hept{\begin{cases}4n+2⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(4n+2\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\Rightarrow3\left(4n+2\right)-2\left(6n+1\right)=4⋮d\)
\(\Rightarrow d\in\left\{1,2,4\right\}\).
mà ta có \(6n+1\)là số lẻ nên \(d\)cũng phải là số lẻ do đó \(d=1\).
Ta có đpcm.
Goi UCLN(4n+3;5n+2)la d
=>4n+3 chia het cho d=>5(4n+3)chia het cho d=20n+15 chia het cho d
5n+2 chia het cho d=>4(5n+2) chia het cho d=20n+8 chia het cho d
=>(20n+15)-(20n+8) chia hết cho d
=>7 chia het cho d
=> d là ước của 7 (-7;-1;1;70
tick nha
Nếu \(n=1\)hiển nhiên ta có đpcm.
Nếu \(n>1\):
Có \(mn⋮n\)mà \(4⋮̸n\)(do \(n\)lẻ) nên \(\left(n,mn+4\right)=1\).
Đặt \(d=\left(4n+3,6n+4\right)\).
Suy ra
\(\hept{\begin{cases}4n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow3\left(4n+3\right)-2\left(6n+4\right)=1⋮d\)
Suy ra \(d=1\).
Do đó ta có đpcm.