Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a: Gọi d=ƯCLN(6n+5;2n+1)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)
=>\(2⋮d\)
mà 2n+1 là số lẻ
nên d=1
=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(3n+2;5n+3)
=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
=>\(15n+10-15n-9⋮d\)
=>\(1⋮d\)
=>d=1
=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.
tink nhé
gọi ƯCLN(4n+3;6n+5)=k
=>4n+3 chia hết cho k | =>3(4n+3) chia hết cho k
6n+5 chia hết cho k | =>2(6n+5) chia hết cho k
=>12n+9 chia hết cho k
=>12n+10 chia hết cho k
=>(12n+10)-(12n+9) chia hết cho k
=>1chia hết cho k =>k=1
=>đpcm
chúc bạn học tốt
4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?
goi UCLN(4n+3,6n+5)=d
=>4n+3 chia hết cho d=>24n+18 chia hết cho d
=>6n+5 chia hết cho d=>24n+20 chia hết cho d
=>(24n+20)-(24n+18) chia hết cho d
=>2 chia hết cho d
mà 2 chia hết cho 1;2
=>d=1;2
.....
đang ban bn làm tiếp nhé
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau
\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố
Gọi \(d=ƯC\left(2n+3;4n+8\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow2⋮d\)
Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)
+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)
\(\Leftrightarrow d=1\)
\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n
Câu b tương tự
Chúc b hc tốt!
a)Gọi UCLN của 2n+3 và 4n+8 là d (d thuộc N*)
=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d
=>(4n+8)-(2n+3) chia hết cho d
=>(4n+8)-2(2n+3) chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư của 2
=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)
Có 2n+3 chia hết cho d
Mà 2n+3 là số lẻ nên d không thể = 2 (ước của số lẻ không =2)
=>d=1
=>UCLN(2n+3;4n+8)=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Gọi \(ƯCLN\left(4n+5;3n+4\right)\)là \(d\)\(\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}4n+5⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}3.\left(4n+5\right)⋮d\\4.\left(3n+4\right)⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}12n+15⋮d\\12n+16⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(12n+16\right)-\left(12n+15\right)⋮d\)
\(\Rightarrow\)\(12n+16-12n-15⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d=1\)
Vậy \(4n+5\)và \(3n+4\)luôn là hai số nguyên tố cùng nhau
giả sử 4n+5 và 3n+4 có ước chung là số nguyên tố d
khi đó ta có 4n+5 chia hết cho d =>3(4n+5)chia hết cho d =>12n+15 chia hết cho d
3n+4 chia hết cho d=>4(3n+4) chia hết cho d =>12n+16 chia hết cho d
từ 2 điều trên =>(12n+16)-(12n+5) chia hết cho d
=>1 chia hết cho d
=>d thuộc ước của 1
=> ước chung của 4n+5 và 3n+4 là 1 và -1
=>4n+5 và 3n+4 nguyên tố cúng nhau