![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=a^3b-ab^3=\left(a^3b-ab\right)-\left(ab^3-ab\right)\)
\(=b.a\left(a^2-1\right)-a\left(b^3-b\right)\)
\(=a\left(a-1\right)\left(a+1\right)b-a\left(b-1\right)b\left(b+1\right)\)
\(Do:\)\(a-1\) \(;\)\(a\) \(;\) \(a+1\) là 3 số liên tiếp nên :
\(\left(a-1\right)a\left(a+1\right)\) \(⋮6\)
Tương tự : \(\left(b-1\right)b\left(b+1\right)\) \(⋮6\)
\(\Rightarrow\) \(A\) \(⋮\)\(6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a5 - a = a( a4 + 1)
= a[ ( a2)2 + 12 ]
= n ( n2 - 1)( n2 + 1)
= n( n - 1)( n + 1) ( n2 + 1) : hết cho 2 và 3
= n( n - 1)( n + 1) ( n2 - 22 + 5)
= n( n - 1)( n + 1)( n - 2) ( n + 2) + 5( n - 1)( n + 1)n : hết cho 5
mà ( 2 ; 3 ; 5) = 1 => a5 - a : hết cho 2 . 3 .5
a5-a=a(a4-1)=a(a2-1)(a2+1)=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a2-4)+5a(a-1)(a+1)
=a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2;1 số chie hết cho 3 và 1 số chia hết cho 5
=>a(a-1)(a+1)(a-2)(a+2) chia hết cho 30
a(a-1)(a+1) chia hết cho 6 do là tích 3 số nguyên liên tiếp
=>5a(a-1)(a+1) chia hết cho 30
=>a(a-1)(a+1)(a2-4)+5a(a-1)(a+1) chia hết cho 30
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = n⁵ - n = n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (\(⋮6\), vì \(⋮2,3\)) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
Do \(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) ⋮ 5 }\\\text{5n(n - 1)(n + 1) ⋮ 5 }\end{matrix}\right.\)
\(\Rightarrow\text{ n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) }⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1)(2)=> \(A⋮30\) do (5,6)=1
![](https://rs.olm.vn/images/avt/0.png?1311)
5(a+2007)3 + 15 (a+ 2007)2 + 10(a+2007)
=5(a+2007)3 + 5 (a+ 2007)2 + 10(a+ 2007)2 + 10(a+2007) = 5(a+2007)2 [ (a+ 2007) +1] +10(a+2007) [(a+2007) + 1]
=5(a+2007)2 (a+ 2008) +10(a+2007)(a+2008) = 5(a+2007)(a+2008) (a+2007 +2) = 5(a+2007)(a+2008) (a+2009)
nhận xét : tích trên chia hết cho 5
và a+2007; a+2008 ; a+2009 là các số nguyên liên tiếp nên tích của chúng chia hết cho 6
=> 5(a+2007)(a+2008) (a+2009) chia hết cho BCNN(5;6) = 30 => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$a^5+b^5+c^5=(a^5-a)+(b^5-b)+(c^5-c)+(a+b+c)$
Giờ ta sẽ cmr với mọi số nguyên $x$ nào đó, $x^5-x\vdots 5$
Thật vậy:
$x^5-x=x(x^4-1)=x(x^2-1)(x^2+1)$
Nếu $x$ chia hết cho $5$ thì hiển nhiên $x^5-x\vdots 5$
Nếu $x$ không chia hết cho $5$: Do tính chất 1 số chính phương khi chia cho $5$ dư $0,1,4$, mà $x\not\vdots 5$ nên $x^2$ chia $5$ dư $1$ hoặc $4$.
+ Khi $x^2$ chia $5$ dư $1$ thì $x^2-1\vdots 5\Rightarrow x^5-x=x(x^2-1)(x^2+1)\vdots 5$
+ Khi $x^2$ chia $5$ dư $4$ thì $x^2+1\vdots 5\Rightarrow x^5-x=x(x^2-1)(x^2+1)\vdots 5$
Vậy tóm lại $x^5-x\vdots 5, \forall x\in\mathbb{Z}$
Áp dụng vào bài toán:
$a^5-a\vdots 5; b^5-b\vdots 5; c^5-c\vdots 5; a+b+c\vdots 5$
$\Rightarrow a^5+b^5+c^5\vdots 5$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5
\(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)
\(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm
\(B=a^5-a\)
\(\Leftrightarrow B=a\left(a^4-1\right)\)
\(\Leftrightarrow B=a\left(a^2-1\right)\left(a^2+1\right)\)
\(\Leftrightarrow B=a\left(a-1\right)\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)
\(\Leftrightarrow B=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)
Tự làm nốt
A=a^5-a
=a(a^4-1)
=a(a-1)(a+1)(a^2+1)
a(a-1)(a+1) chia hết cho 6
nếu a=5k => B chia hết cho 5.6=30
nếu a=5k+1 => -1 chia hết cho 5 => B chia hết cho 30
Nếu B =5k+2 => ^2+1=25k^2+20k+5 chia hết cho 5
=> B chia hết cho 10
nếu a=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>B chia hết cho 30
Nếu a=5k+4 =>+1=5k+5 chia hết cho 5
=>B chia hết cho 30
Vậy với a nguyên dương thì a^5-achia hết cho 30