Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=a^5-a=a(a^4-1)
=a(a-1)(a+1)(a^2+1)
Vì a;a-1;a+1 là 3 số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>A chia hết cho 6
Vì 5 là số nguyên tố
nên a^5-a chia hết cho 5
=>A chia hết cho 30
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
Có \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\text{a}\left(a-1\right)\left(a+1\right)\)
Có a(a-1)(a+1)(a-2)(a+2) là 5 số tự nhiên liên tiếp => có 1 số chia hết cho 5, 1 số chia hết cho 3 và 1 số chia hết cho 2 => chia hết cho 30
a(a-1)(a+1) là 3 số tự nhiên liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3 => 5a(a-1)(a+1) chia hết cho 30
vậy tổng của chúng chia hết cho 30
=> đpcm
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Trước hết, \(a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 (1)
Lại có \(a^5=a^{4.1}.a\)
TH1 : a chẵn, coi chữ số tận cùng của a là n \(\Rightarrow a^5=a^{4.1}.a=\left(...6\right).n=\left(...n\right)\)(Vì 6 nhân với chữ số chẵn nào cũng có tận cùng là chữ số đó )
TH2 : a lẻ, coi chữ số tận cùng của a là m \(\Rightarrow a^5=a^{4.1}.a=\left(...1\right).m=\left(...m\right)\)
Do đó \(a^5\)và \(a\)luôn có cùng chữ số tận cùng
\(\Rightarrow a^5-a\)chia hết cho 10 (2)
Từ (1)(2)\(\Rightarrow a^5-a\in BC\left(3;10\right)=B\left(30\right)\) ( Vì ƯCLN(3;10)=1 )
Vậy ...
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Đặt A = n⁵ - n = n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (\(⋮6\), vì \(⋮2,3\)) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
Do \(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) ⋮ 5 }\\\text{5n(n - 1)(n + 1) ⋮ 5 }\end{matrix}\right.\)
\(\Rightarrow\text{ n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) }⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1)(2)=> \(A⋮30\) do (5,6)=1
a5 - a = a( a4 + 1)
= a[ ( a2)2 + 12 ]
= n ( n2 - 1)( n2 + 1)
= n( n - 1)( n + 1) ( n2 + 1) : hết cho 2 và 3
= n( n - 1)( n + 1) ( n2 - 22 + 5)
= n( n - 1)( n + 1)( n - 2) ( n + 2) + 5( n - 1)( n + 1)n : hết cho 5
mà ( 2 ; 3 ; 5) = 1 => a5 - a : hết cho 2 . 3 .5
a5-a=a(a4-1)=a(a2-1)(a2+1)=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a2-4)+5a(a-1)(a+1)
=a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2;1 số chie hết cho 3 và 1 số chia hết cho 5
=>a(a-1)(a+1)(a-2)(a+2) chia hết cho 30
a(a-1)(a+1) chia hết cho 6 do là tích 3 số nguyên liên tiếp
=>5a(a-1)(a+1) chia hết cho 30
=>a(a-1)(a+1)(a2-4)+5a(a-1)(a+1) chia hết cho 30
=>đpcm