K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Đặt 2a + b = 7k chia hết cho 7 => (2a + b)2 = 49k2 chia hết cho 49

(2a + b)2 = 4a2 + 4ab + b2 chia hết cho 49

4a2 + 4ab + b2 - (3a2 +10ab - 8b2) = a2 - 6ab +9b2 = (a - 3b)2

Ta có 2a + b chia hết cho 7 nên 3(2a + b) = 6a + 3b chia hết cho7

Ta có 6a + 3b + (a - 3b) = 7a chia hết cho 7 mà 6a + 3b chia hết cho 7 => a - 3b chia hết cho 7

a - 3b chia hết cho 7 => (a - 3b)2 chia hết cho 49

=> 4a2 + 4ab + b2 - (3a2 + 10ab - 8b2) chia hết cho 49

mà 4a2 + 4ab + b2 chia hết cho 49 => 3a2 + 10ab - 8b2 chia hết cho 49

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

3 tháng 11 2017

a)\(\left(a^2-1\right)=\left(a+1\right)\left(a-1\right)\)

Xét\(a=3k+1\)\(\Rightarrow a-1⋮3\)\(\Rightarrow a^2-1⋮3\)

Tương tự a=3k+2

Bạn chứng minh tích 2 số nhẵn liên tiếp chia hết cho 8

Mà (3;8)=1

\(\Rightarrow a^2-1⋮24\)

21 tháng 6 2017

a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)

=a(a+1)(a+2)

Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)

mà (2;3)=1

=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)

b)Ta có:

a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a

cái này có phải đề sai k vậy bạn

21 tháng 6 2017

đúng mà bn

22 tháng 8 2017

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé