K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a < b ⇔ a + (-b) < b +(-b) ⇔ a - b < 0

9 tháng 11 2019

Cách 1: Sử dụng các phép biến đổi tương đương để chứng minh bất đẳng thức.

Ta có:

Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Do đó: Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10 (đpcm)

Cách 2: Sử dụng bất đẳng thức Cô-si để chứng minh bất đẳng thức.

Áp dụng bất đẳng thức Cô-si cho hai số dương Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10 và √b ta có:

Giải bài 10 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Dấu “=” xảy ra khi và chỉ khi a= b > 0

7 tháng 12 2021

ơ kìa đang lm ra tab khác thấy lm xong r :(

7 tháng 12 2021

ILoveMath làm tab khác lmj :v

20 tháng 3 2018

a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)

b)\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)

29 tháng 12 2017

Xét  a + b 8  với mọi a,b ≥ 0 ta có:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Áp dụng bất đẳng Cô-si cho hai số dương a + b và  2 a b  ta được:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

NV
3 tháng 3 2021

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Tương tự: \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}\) ; \(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng vế:

\(VT\ge\dfrac{2a+2b+2c}{a+b+c}=2\)

Dấu "=" ko xảy ra nên \(VT>2\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( { - a;b} \right)\). Do đó \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\)

Phương trình tổng quát của đường thẳng AB có vectơ pháp tuyến  \(\overrightarrow {{n_{AB}}}  = \left( {b;a} \right)\) và đi qua điểm \(A\left( {a;0} \right)\)là: \(b\left( {x - a} \right) + a\left( {y - 0} \right) \Leftrightarrow bx + ay - ab = 0 \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).

NV
6 tháng 3 2021

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

6 tháng 3 2021

Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)

Áp dụng bđt Cô-si vào các số a,b,c dương :

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)

Chứng minh tương tự ta được:

\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

11 tháng 9 2020

Bằng phản chứng giả sử a và b đều âm 

\(\Rightarrow a< 0,b< 0\Rightarrow a+b< 0\)

Mà theo đề: \(a+b>0\)---> Mâu thuẫn giả thiết, vậy có ít nhất 1 trong a,b phải dương